a2 United States Patent

Carpenter et al.

US009268829B2

US 9,268,829 B2
Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

LEVERAGING COLLABORATIVE CLOUD
SERVICES TO BUILD AND SHARE APPS

Applicant: Tropare, Inc., Laguna Beach, CA (US)

Inventors: G. Gregory Carpenter, Laguna Beach,
CA (US); Timothy L Kay, Los Altos,

CA (US)

Assignee: TROPARE, INC., Laguna Beach, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/564,088

Filed: Dec. 9, 2014
Prior Publication Data
US 2015/0161221 Al Jun. 11, 2015

Related U.S. Application Data

Continuation of application No. 12/894,104, filed on
Sep. 29, 2010, now Pat. No. 9,104,738, and a
continuation-in-part of application No. 12/777,454,
filed on May 11, 2010, now Pat. No. 8,768,909, and a
continuation-in-part of application No. 12/620,195,
filed on Nov. 17, 2009, now Pat. No. 8,255,411, said
application No. 12/894,104 is a continuation-in-part of
application No. 12/142,725, filed on Jun. 19, 2008,
now Pat. No. 8,255,382.

Provisional application No. 61/247.440, filed on Sep.
30, 2009, provisional application No. 61/149,281,
filed on Feb. 2, 2009, provisional application No.
61/115,665, filed on Nov. 18, 2008.

Int. Cl1.
GO6F 17/30 (2006.01)
HO4L 29/08 (2006.01)

Search Server

Search Result Update Module
116

(52) US.CL
CPC ... GO6F 17/30563 (2013.01); GOGF 17/30445
(2013.01); HO4L 67/10 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0067427 Al* 3/2007 Bugir ... GO6F 21/10
709/223

2008/0134316 Al* 6/2008 Devonshire GOG6F 9/548
726/15

2009/0327282 Al* 12/2009 Wittig GO6F 17/30165

* cited by examiner

Primary Examiner — Belix M Ortiz Ditren
(74) Attorney, Agent, or Firm — BRAINSPARK
ASSOCIATES, LLC

(57) ABSTRACT

The present invention includes systems and methods for
retrieving information via a flexible and consistent targeted
search model that employs interactive multi-prefix, multi-tier
and dynamic menu information retrieval techniques (includ-
ing predictive text techniques to facilitate the generation of
targeted ads) that provide context-specific functionality tai-
lored to particular information channels, as well as to records
within or across such channels, and other known state infor-
mation. Users are presented with a consistent search interface
among multiple tiers across and within a large domain of
information sources, and need not learn different or special
search syntax. A thin-client server-controlled architecture
enables users of resource-constrained mobile communica-
tions devices to locate targeted information more quickly by
entering fewer keystrokes and performing fewer query itera-
tions and web page refreshes, which in turn reduces required
network bandwidth. Applications are built by leveraging
existing collaborative cloud services that enable the mainte-
nance and sharing of user content.

20 Claims, 62 Drawing Sheets

Multi-prefix Search Module ‘1 Data Field 1
" TR SToRE ==

Multi-tier Search Module " DATA STORE /] g Data Fiald 2

157 el O e 7| Record1 Data Field 3

Result Delivery Module Channel DB 114 - Record2 |\ | .0
154 Channel A Record 3 N
index DB ChannelB |~ [+
130 N

NETWORK

122

148
Client

126
Browser
124
Client Applications

Table of Contents DB
132

Channe! C ~ 142

140

index D8

130

Table of Contents DB
132

112

US 9,268,829 B2

Sheet 1 of 62

Feb. 23, 2016

U.S. Patent

007
A% i)
— MAOMLAN
Ay
g Sjudjuod Jo olget
oSt
g0 Xapu|
— Sl
pii ajnpopy AleAljaQ Ynsay
gd jsuueyy 7oL
. 3|NPO YoJBag JBI-IINA
OIS VIVA [
[Ow!\\ ainpopy yoseas xyasd-mny | 8el
gLl
ajnpopy s1Bpdn JNsey Yoieas
J9AIBG Y2IRag

suogeoyddy waiD
j74%
1asmalg
o143

u

810
8l

US 9,268,829 B2

Sheet 2 of 62

Feb. 23, 2016

U.S. Patent

dl 9l

¢l

el
gqQ Sjusjuay Jo 8jGe |

0el
80 xspu|

ol e
arl ~ 3 jeuuey)
oo || greuuEyD
"~ € plooay v [suuey)
e+ |°~.] zpiooay - FIT €a jsuuey)
€ plald eleq | piooay |/
zpelieeg | IOLS VLIV
L pleid eeq | /7

US 9,268,829 B2

Sheet 3 of 62

Feb. 23, 2016

U.S. Patent

40IA3d
HIAIJOSNYY L JOVHOLS
J7190NW
TS
012 K
F0¢ /
H31dvay H3ldvay
MHOMLIN SHIHAYNO - AJONEN <] HOSSIOOHd
91z -/ uz- oz N
002

U.S. Patent Feb. 23,2016 Sheet 4 of 62 US 9,268,829 B2

Client 300 Server
\ | y,
Initialize application |
301 | l
| Send inf i displ
.) | end information to display
Dtsplago\gnndow ‘ | in window
—_ | 302
' |
Input keystroke and send | Receive user input
— !
to server f - 306
304 |
| l
|
| Search channel database
| 307
' l
Display result list < ! Send result list
309 i 308
|
|
: |
displayed? |
310 |
|
|
|
| Receive selected or web
Select result ,
312 " page
— | 314
| !
Display channel or web | Send channel data or web
page Lt | page
316 | 315
I

!

input search query or

begin browsing F l G . 3A

318

U.S. Patent

Feb. 23, 2016

Client

N

Display channel or
web page

316

183
(=]

Sheet 5 of 62

=

l

tnput keystroke and
send to server
324

Send channel data or
web page

315

Display resutlt list
330

Receive user input
326

l

Search fields of
transmitted channel
328

l

displayed?
332

Select result for
further examination

334

FIG. 3B

Send result list
329

US 9,268,829 B2

Server

l

input search query
and send to server
344

Display result list
348

Receive user input
348

l

displayed?
350

Select result for
further examination

352

Send result list
347

FIG. 3C

U.S. Patent Feb. 23,2016 Sheet 6 of 62 US 9,268,829 B2
340
Client | Server
|
\ | /
tnitialize application |
341 |
|
I
I
Disol nd [Send information to
ISpiay Window R E— display in window
343 342

U.S. Patent Feb. 23,2016 Sheet 7 of 62 US 9,268,829 B2
{ Start }
Y 400

Display landing page
402

\ 4

Maonitor for user input |

404 B

Update user input
field
408

Conslruct query URL,
_ | Retrieve new list from

Y

server and display
410

Did user sele

4

Change base URL,
Clear user input field
412

an entry?
414

No

Y

channel?
416

Activate browser,
Steer browser to
selected entry
418

FIG. 4

Y

U.S. Patent

(Start)

Y

Feb. 23, 2016

Condition and
deduplicate records
502

Sheet 8 of 62 US 9,268,829 B2

500

I’

¥

Sort records and
assign sequential
record 1Ds

504

4

Split headings into
words and make list of
words
506

4

Make a list of prefixes
and their incidence
508

L 4

Remove from the prefix
list those entries that
are prefixes of other
entries and have the

same incidence
510

A

For each word in each
record, if the prefixis in
the prefix list, generate
an index entry
containing the prefix
and the record 1D

512

) 4

Sort the index eniries
by prefix then record 1D
514

Y
Split index entries into
record D lists, one for

each prefix
516

) 4

Compress the record
ID lists
518

h 4

(Stop }

FIG. 5

U.S. Patent

(Start }

L 4

Feb. 23, 2016

Set last_offset =0
Set offset = 0
602

y

Retrieve (prefix,
length) of record ID
list from index at
offset
604

Sheet 9 of 62

600

US 9,268,829 B2

Is offset -
jast_offset >

No

threshold?
606

Append (prefix,
offset) to TOC
608

A 4

Set last_offset =
offset
610

A 4

Add length to offset

812

FIG. 6

Is
offset > size of
index?
614

U.S. Patent Feb. 23,2016 Sheet 10 of 62 US 9,268,829 B2

Heceive query and @
split into individual

prefix terms Order result list by
702 relevancy
Y 714
For each term, using *
the TOC, find ID list

with matching records

Send result list
704

716
¥
Set “next ID” in each
list to be first ID in list,
initialize resuits list P
706

y

Are

the next IDs Pick 1D list with
for all ID lists smallest next ID any of the ID
the same? 720 lists?
708 722
Add (1D, relevancy Drop that ID from that
factors) to results list 1D list -
710 724

that ID thd
fast in any of
the ID lists?
712

Drop that ID from
each D list
718

¥

FIG. 7

U.S. Patent Feb. 23, 2016

Set index_offset=0
802

!

Start at beginning of
TOC
804

Y
Retrieve next entry
from TOC, yielding
(prefix, offset)
806

prefix < search\ No

Set index_offset =
offset
810

Sheet 11 of 62

US 9,268,829 B2

800

Y

Start processing
index at index_offset

812

Y

Retrieve next entry
from index, yielding | _
(prefix, record ID list) |~

814

search term?

Is
prefix <

816

prefix of the
prefix?
818

Not Found

Use record ID list at

index_offset
820

FIG. 8

U.S. Patent Feb. 23,2016 Sheet 12 of 62 US 9,268,829 B2

904

» 905

FIG. 9A

U.S. Patent Feb. 23,2016 Sheet 13 of 62 US 9,268,829 B2

FIG. 9B

U.S. Patent Feb. 23,2016 Sheet 14 of 62 US 9,268,829 B2

FIG. 9C

U.S. Patent Feb. 23,2016 Sheet 15 of 62 US 9,268,829 B2

921

924

933

926
925

FIG. 9D

U.S. Patent Feb. 23,2016 Sheet 16 of 62 US 9,268,829 B2

FIG. 9E

U.S. Patent Feb. 23,2016 Sheet 17 of 62 US 9,268,829 B2

FIG. 9F

U.S. Patent Feb. 23,2016 Sheet 18 of 62 US 9,268,829 B2

?——_~ [E] 2 live boopsie.com/i/Starbucks%...

our stores

T T T T R e T T

Los Altos Rancho

654 Los Altos Rancho

Los Altos, CA 94024 941
(650) 917-1359

* This store has T Mobile HotSpot wireless broadband
Internet Service
* Please call this store directly for store hours

U.S. Patent Feb. 23,2016 Sheet 19 of 62 US 9,268,829 B2

9563 -

FIG. 9H

US 9,268,829 B2

Sheet 20 of 62

Feb. 23, 2016

U.S. Patent

952

983 -

FIG. 9

U.S. Patent Feb. 23,2016 Sheet 21 of 62 US 9,268,829 B2

FIG. 9

U.S. Patent Feb. 23,2016 Sheet 22 of 62 US 9,268,829 B2

FIG. 9K

U.S. Patent Feb. 23,2016 Sheet 23 of 62 US 9,268,829 B2

904

FIG. 9L

U.S. Patent Feb. 23,2016 Sheet 24 of 62 US 9,268,829 B2

960

e boapsiscomfhostcalteaind,.,

wWestidartouiltund Sesice

FIG. OM

U.S. Patent Feb. 23,2016 Sheet 25 of 62 US 9,268,829 B2

1004

~ 1005

FIG. 10A

U.S. Patent Feb. 23,2016 Sheet 26 of 62 US 9,268,829 B2

1003 -

1004

1022
- 1005

1022

FIG. 10B

U.S. Patent Feb. 23,2016 Sheet 27 of 62 US 9,268,829 B2

1003 -

1024

1024

FIG. 10C

U.S. Patent Feb. 23,2016 Sheet 28 of 62 US 9,268,829 B2

1109

FIG. 11A

U.S. Patent Feb. 23,2016 Sheet 29 of 62 US 9,268,829 B2

FIG. 11B

U.S. Patent Feb. 23,2016 Sheet 30 of 62 US 9,268,829 B2

1125 a
"""""""""""""""""""""""" 1125

AboutéScrount
Exit

1126—

1128 a

FIG. 11C

US 9,268,829 B2

Sheet 31 of 62

Feb. 23, 2016

U.S. Patent

G021 <

\ /4

Old

6021

A

B60C I

NUB

3oed

i Bor Bk

IS spusi

79/

JNOA peo| Aew 00gase Joj aisdoog Jey) os ‘u Boj aseald -«

9021

/021

ui Boj asesidq

%00q80e]

0

P oce[

aujjuo-sisdoog

AVAS ‘k

US 9,268,829 B2

Sheet 32 of 62

Feb. 23, 2016

U.S. Patent

dél oOld

L1

aisdoog asn)
uiebe yoogeoe] ojui BuiB6o| pioae 0y ojul uiboj Aws aaeg DA/

‘leuondo

:plomssed

:8U0Yd {0 jIews

3bed Uiboj |ewiiou ay) 0) ob uaddey 0 sty Juem Juap noA §j

"aisdoog Jo Ajjeucnouny (In} ay3 Aofus 0} yoogase4 o) uibo] ™

uf Go

3oogaoe;

N_.Ne!\k

US 9,268,829 B2

Sheet 33 of 62

Feb. 23, 2016

U.S. Patent

a¢l 9Ol4

I

aisdoog asn 0}
uiefe yoogaoe ojui Buibboj pioae 0y ojui uibol Aw aARg SA/

‘leuondQ

NI NN
‘pIomssed

wod jou@Aey g o

'BUOY JO Iewg

~"2bed uibo] jewlou sy} 0} 0B usddey 0} sy} JUBM J,UOPR NOA }|

‘aisdoog jo Ayjeuonouny jiny ay) Aolus o} jooqaoe o} uibo 4

uf 6o «

-8zl

N~ 1221

- 0zz1

N~122l

~~GzzZlL

Rooqaoe;

cict ‘\k

US 9,268,829 B2

Sheet 34 of 62

Feb. 23, 2016

U.S. Patent

actk olid

6ecl
A

B6EC)

NUSA} yoegq

GeCl <

vO ‘00SIOURI4 URSG / OU| JUBLIOL NG
19|z)144 wepey [

VD ‘AsjiepA - | DS 18uoeg
g1 uosey mm

(4610 0Z O} L) Spuaiy /6

S00qa08;}

| o

:Wf Qe @ suljuo-aisdoog

Nmmrl\\

>9gcl

Twmm_‘

US 9,268,829 B2

Sheet 35 of 62

Feb. 23, 2016

U.S. Patent

SheL <

ALy

\

fo]

421 ©9l4
PN _ yoeg
ysaijay
Butaquiog x|y %
apord Ay [T T s s e e e
H00 7 1Ld
9S50y dueupy %
puaiy Jo e
\\\ LTii \§\\\\\\\\N\§
‘odsiouel] Ueg | ouj Jualiol 11g
. Lm_ﬁ_;m Em_om.q =7
puaiy abesssiy \\\\\ \

\\\X@Ma

<o ‘Kollep UOOIS / DSN [-
IAST] Ulley m.ﬂ

=]

it e o o At B A A e 2w e

(46 40 0T 01 L) spuayy L6

}00Qade}

0

auljuo-sisdoog

US 9,268,829 B2

Sheet 36 of 62

Feb. 23, 2016

U.S. Patent

4¢1 Old

6621
A

B6SCl

:mws_ yaeg

auljpyo sejbnoq 5!
HOSOOIUW [AR ‘Bljess
pio- siua(g mm
Qg / XL ‘ugsny
elogeNSI ared mm

Bunexie pioysaiyl / vion / vO 'sejabuy son
wiayuey ueq Wm

spualj ¢

300qase]

End

:Mw oqe @ sujjuo-aisdoog

Nmm_.l\\

>9GC1

s

US 9,268,829 B2

Sheet 37 of 62

Feb. 23, 2016

U.S. Patent

e TA RS

¢l 'Old
P _ %oeg
,,,,,,,,,, -
aunpyn seibnog m.m
% dA 7
\& pusly 40 |[eFR §\ Y
HnQg / X1 'unsny
Y ejogqeNIWN oAeg A2
puail) abessa B
o b §§ -
59l _ FRUL/VTION/ VO ‘sejebuy 507
puaLy a40g unayuep ueq Hm
;;;;;;;;;;;;;;;; - spuauy ¥
sjpuuBYy |V SGERLN
BWOH wp /O
:@WAW sssssss auljuo-sisdoog

U.S. Patent Feb. 23,2016 Sheet 38 of 62 US 9,268,829 B2

START

T a0 1320 1330

T . QResult “~_ Yes Load Result .
“~._in Cache? - T from Cache Deliver Result STOP

A

No

{ 1312

Compute
Q Result

L 1314

COMPUTE f(Q)
Length of Q,
Length of Terms,
of Terms

1318
8 No
T ff@y<=Le

Yes

1318

Store Result
in Cache

1300

FIG. 13A

U.S. Patent Feb. 23, 2016

START

1370

Sheet 39 of 62

A 1380
IR T
Yes

Q Result ™ '
= _inGache? .~

Load Result
from Cache

1380

US 9,268,829 B2

No

1362
Compute Q Result
measuring
Q Time t

4
L1384
IST . No

b 4

Deliver Result

STOP

.

<. QTime>t7?. -

Yes

1366

Store Result

in Cache

FIG. 13B

1350

U.S. Patent Feb. 23,2016 Sheet 40 of 62 US 9,268,829 B2

START

with index
er FIG 5

1405
Order Record ID Lists by
Length (longest first) then 1430
by Prefix if same Add All
(shortest first) New Lists to
index
1410
Look up + 1440
L = Length of Nth Longest
Record 1D List Add to Index List of
Prefixes used to
create Hybrid Lists
1415
A 4
> For each Listi where
List Length > L

' STOP l

1420

Combine List | with
Remaining Lists of
tength>L

'

o7 1425

Yes .7 " Are there ™ ~. No
.. More Lists 1 7.~

1400

FIG. 14A

U.S. Patent

l START ,

v 1460
Extract
Query Search Terms

l

o 1485
-~ Single ™.

Feb. 23, 2016

Sheet 41 of 62

-~ Search Term ..Yes
“n Query?.-

No

1470

identify Candidates -
le, Search Terms used
to create Hybrid Lists

1475
Replace

Pairs of Candidates
With Hybrid Prefix Terms

%1480

1485

“Odd Number - - Yes

’/‘;\.\ Of Candidates? .- >

Pair Remaining Candidate
With Other Candidate
Yielding Shortest List

No

ol
Lt]

4 1490

Perform
Search
1450

FIG. 14B

US 9,268,829 B2

U.S. Patent

I START ’

1502 ¢

Condition and
Deduplicate Records

1504 |

Sort Records
{optional)

1506 |

Assign Sequential
Record 1Ds

Feb. 23, 2016

1510 1

For each
Record r

1512

l‘—

Sheet 42 of 62

1542
Prepare nextr
(set r to next Record)

initialize Lists

Hybrid Prefixes)

{a list of Prefixes and

1 540

1515 A

1538

US 9,268,829 B2

‘—| Yes

ls there another
Record r’?

¥

No

For each Word w

in the header of Record r

Emit each element of List s
along with Record 1D for r

1536

Prepare next w

1520

(set w to next word of r)

For each Prefix p (of w)

|

1532

Prepare next p

1522y

”

(append next letter of w)

ot
Y

15247 . ves

1526

<_lsqins? >—»

Setqtog~p

1544

Yes

1530 T
s there another

T Prefix p?.

1534 e

No
!s there another)
-~ \‘Word w’?

No

Yes

v

Sort Emitted items
by Prefix then Record 1D

1546

v

Split items into Record 1D Lists
{one for each Prefix)

1548

v

Compress the
Record ID Lists

STOP

FIG.

1500

19A

U.S. Patent

(START ’

Feb. 23, 2016 Sheet 43 of 62

US 9,268,829 B2

1590
Intersect the Lists > STOP
1560 |
Sort Query Prefix Term
Alphabetically 1588 ,
Look up Record ID Lists for
Each Emitted Value
1562 4]’
No
Far each BN
Prefix Termt 1584 -7 .
1686 ves e o 1582
s 7 |s there another ™. .
:—'I Prepar‘e Next t o Query Termt? 7
1564 7 T
o s Termt 5 No
. Markedtobe > e
“-.Skipped? - 1580 1578~ e
NP Prepare Next t le Yes . -l there another ™.
lN o | T Prefixt? 7
1566 R
Setqtot I
) r Y
,,II\\ID INO
1568 4 15707 1572 1576
F h 7 isTermt “-Yes 1574 Does™.Yes| Mark Termt
or eac KNS ~Ye N " Does ™)
Remaining Term t' > a Prefixoft_~ Setqto gt > t=t7. "] tobe Skipped
FINISH
1550

FIG. 158

U.S. Patent Feb. 23,2016 Sheet 44 of 62 US 9,268,829 B2

S

Fet wil of vour Fawnrit

FIG. 16A

&mmmw ——

sges Yigew o Loval | She

rtiever Brse Wi has 8§ €

Welcome to Briefcase coml Sirel
feather briefcase, Myion messeng
w riefoase.com - .

16604
Tahio! Briefease E
fLpabisfcasevalivn.oonr v]

Brisirases Logther & L aplo
. Contact o tewined hrisdcase o

FIG. 16B

U.S. Patent

Feb. 23, 2016

Sheet 45 of 62

17 20} ermerssevesresmessesborn

17304

=

Jamaes K. Polk
Jon & Kate Plus 8

Jacqueline Kennedy Onassis

&5

N

iome 1w Wikipedia Eaglish The
g Encyoiopedis

.”f)'

FIG. 17

US 9,268,829 B2

U.S. Patent Feb. 23,2016 Sheet 46 of 62 US 9,268,829 B2

1810

1820 . Yaho@ﬁriamﬁa Ama Hotels

{45 mi) Hilton Garden inn-Uct
1959 N Alataya Tt

Ortando, FL

{307} 892-5000

1830 4
{48 mi} Hilton Garden Inn-intl Dr N
5877 American Way

Orfando, FL

@;<§ S

U.S. Patent

Feb. 23, 2016 Sheet 47 of 62

US 9,268,829 B2
1935 Suggested Query Terms
Search Results
1995 Query Prefizes 1930

GPS SEARCH

Query Prefixes SERVER

GPS
1910
CLIENT NETWORK
1940
1950 § Search Results
Targeted Ads

p) TARGETED AD
SERVER
Suggested Query Terms

1937 Search Results
QP GPS
User Profile

Other Contextual info

1945
0—{ Targeted Ads

FIG. 19

U.S. Patent

2022

2024

2026

2028

2020
CLIENT

Feb. 23, 2016

User Enters Keystrokes

Reprasenting
Search Term Prefixes

2030
SEARCH

SERVER

2032

Sheet 48 of 62

Client Sends
Search Term Prefixes
to Search Server

Search Server
Uses Index to Compute
Search Results and
Suggested

Query Terms

Client Sends
QOther Contextual info
To Search Server
(GPS, User Profile, etc)

|
2034

>

Search Server Sends
Other Contextual Info
to Targeted Ad Server

2036

Search Server Sends

Suggested Query Termsl >

and/or Search Results
to Targeted Ad Server

Client Presents
Search Results and
Targeted Ads
to User

2038

e

Search Server Sends
Search Results and
Targeted Ads
To Client

FIG. 20

US 9,268,829 B2

2040
TARGETED AD

SERVER

2042

Targeted Ad Server
Generates
Targeted Ads

\ 4 2044

Targeted Ad Server Sends
Targeted Ads
To Search Server

U.S. Patent Feb. 23,2016 Sheet 49 of 62 US 9,268,829 B2

2120 ERcUiohs Recih
y - grade A beel 101
FLANK STEAK SALAD WITH
ROASTED SHALLOTS AND GOAT
CHEESE

FLANK STEAK WITH CHIMICHURRI
FLANK STEAK WITH CRISPY
POLENTA AND ROASTED -
YT MINATGRET T

21304

FIG. 21

US 9,268,829 B2

Sheet 50 of 62

Feb. 23, 2016

U.S. Patent

. sddy jueys sddy juald
NN o_m uypece eyee
195M0Ig eee 19SMOIg
I ugece ©cell
00¢¢ e wsl0
ugzee BQZCC
0122
MHOMLIN
Svie
ddy jual),
YA LA
seojaeg ddy 6£Z2

Jonleg ddy

0vee

$30iA18G PO

2822
ANLINOD

A3VHS

ezl

sddy pnopd
WIoREld PnoiD

0eee

U.S. Patent Feb. 23,2016 Sheet 51 of 62 US 9,268,829 B2

23 1 2 & ERNEE "'ADVJ!}‘E Bots Badiment

2314 A dauriens contaits fres form Lest,

ot} item desoription

Lfa embediteq

T Téng tabfe tv smbedded i the dosument.
Lol

2320

2l arnbedde woagy

R This fepaepe i Stnbedidedt in the docusiend msihy 2
Tadie

3 res foryg Feat Therd 13w form ket above and beicw the Tsikle,

wing dnage is erabedded shalde the danument, /

2310

Tha fal

FIG. 23

U.S. Patent Feb. 23,2016 Sheet 52 of 62 US 9,268,829 B2

?sm. ’ T 581 Besry i i 5 65"'7 Cﬁ?
Rkt 1 Bramsoas 2| -555-RgER

FIG. 24

U.S. Patent

Feb. 23, 2016

2510
BEGIN
Each Minute

2520 y

Retrieve List of
Shared Documents
Using Google API

<.
<

A 4

y

More Docs
in the List
fo be
Processed?

Is Doc ETAG
Different Than
Previous ETAG?

2350 -

Sheet 53 of 62

Yes|

US 9,268,829 B2

2540
STORE
Changed ETAG

2542 §

Retrisve
Documeant

2544 v

Extract
Data and MetaData

2546 ¥
Update and
Repurpose
Content and

Optionally Build
{or Rebuild)
APP
i

N
1
(=g
L]

FIG. 25

US 9,268,829 B2

Sheet 54 of 62

Feb. 23, 2016

U.S. Patent

V9¢ Ol

¢ ayen o[
<

_ yor 5[y

¢ 4

¢ dr

s <

o SOURF § @

e | e e

— YN BT 2

e ¢ SNYLDYD 8N10%

L apupine L L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, &

P 238
U0 aouRIng rmeememn | E71
R £ m PO 14 \t

{peiep ‘154) s10us uBBINs Suols) BU YOO 1B SJBUURYD S1ISdeog S1BB0 v SRdwer sii}
™ ez, soquaaydog |
§004 Qe m%\mwmm
aisdong sdusy so00 sisdoog !
wipay Jenn0g asdoog.

i i i 4 W, i i Y 5 e . i i e e o S S P 1&143.333,xsi..\!ﬂ33333,3._l..)eia.vi.i.,}iiiiiiia}ts}333?.}3\3\35.\:&5,15?33*“*33'!!?*35‘&5"’70W@M”

*.0097

U.S. Patent Feb. 23,2016 Sheet 55 of 62 US 9,268,829 B2

2625
Players d
;:;“f}";‘?gé} ;f{;‘%@e iﬁgﬁ; Phone | Frveit Description | Statistice
1 ('}’ ! {aurenos fmurencecoll Eﬂs@ wEL
, /‘éﬂ \ comoastnel ICAPITANOQ Y
;v"’ ’\ .
o \,{, Liltle Mike
s o :
. et _ 850} jweghee@
3 ” il JameS 1o09.0975 | yahoo.com
e ;: e“f : -;: »
) NP
5 A | Yer det
& ;’f» \: ifgil g
Ji o1y
Fi gg':’} Eriu
L:,,.,.,{ ot
8 x;’;,’“m £
g TS 11 Eduardo
= *Buddy”
ki Luis
11 S\s‘i Grag
—
12 (i{s;(fs;» Big Mika
13 {;}‘ Ef
14 \E” $11 Tim 9 ;gﬁgﬁ trkay@no.com
15 31 . B
/’*%;i Fernando
16 {{(: } lan
SN
g":f'i [L a E Q?? 137 ay‘a}’ﬁ@

FIG. 26B

US 9,268,829 B2

Sheet 56 of 62

Feb. 23, 2016

99¢ 9id

gnp Jaanos dn yoid 186
j
_ / w
Heuquiny 8y} se pasn aq o} afiew; Jo N NM/ N RGN
JBUUBYD BUL PING 01 28N 07 S1RtlB] YU SBYRUeD BIS0)7480008 PO | Sedwgy
100'L UOISIBA
uonduossp anfeA Buies

"BUInD 48 NOA JRLM RO NOA SSAIIN ‘SWIsY
959U} ApOUI 10U Op 958a) SSE00id LOIERID PBuUBLD Bisdoog su 10 s1edse snoyeA joauoD sBunes Bumoyo; syl

ATNQ 81M3dX3

U.S. Patent

X059z

US 9,268,829 B2

Sheet 57 of 62

Feb. 23, 2016

U.S. Patent

FIG. 27A

U.S. Patent Feb. 23,2016 Sheet 58 of 62 US 9,268,829 B2

2730

Chicken Legs Roster .
pick up soceer club > 20

& Golden Cobras Roster |
AYSO 45 LU Z2B-12 &

, Green Day - Dookie

Green Day Band Members
L an American rock ng

Katy Perry - Katy Hudson

2725
FIG. 27B

U.S. Patent Feb. 23, 2016 Sheet 59 of 62

S

oster

- 1 Laurence Collins
b «EL CAPITANO*®

E 2 Littte Mike
3 James Gowers

4 "Yipple" JP

US 9,268,829 B2

2

&

i,
U

U.S. Patent Feb. 23,2016 Sheet 60 of 62 US 9,268,829 B2

Enter your invitation code
- check your email > 2810

FIG. 28A

U.S. Patent Feb. 23,2016 Sheet 61 of 62 US 9,268,829 B2

@54 AN

12830

U.S. Patent Feb. 23,2016 Sheet 62 of 62 US 9,268,829 B2

Chicken Legs Roster
pick up soccer club

» Golden Cobras Roster
AYSQO 45 U1z2B-12

 Green Day - Dookle

- Green Day Band Members
an American rock trio *

% Katy Perry - Katy Hudson

N

{ Katy Perry - One of the Boys

2850

FIG. 28C

US 9,268,829 B2

1
LEVERAGING COLLABORATIVE CLOUD
SERVICES TO BUILD AND SHARE APPS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/894,104, filed Sep. 29, 2010, entitled “Lever-
aging Collaborative Cloud Services to Build and Share
Apps,” which claims the benefit pursuant to 35 U.S.C. §119
(e) of () U.S. Provisional Patent Application No. 61/247,440,
filed Sep. 30, 2009, entitled “Building and Sharing Apps
Using Collaborative Services,” and is a continuation-in-part
and claims benefit pursuant to 35 U.S.C. §120 of (i1) U.S.
patent application Ser. No. 12/777,454, filed May 11, 2010
and issued as U.S. Pat. No. 8,768,909, entitled “Dynamic
Menus for Multi-Prefix Interactive Mobile Searches Using
Predictive Text to Yield Targeted Advertisements,” (iii) U.S.
patent application Ser. No. 12/620,195, filed Nov. 17, 2009
and issued as U.S. Pat. No. 8,255,411, entitled “Dynamic
Menus for Multi-Prefix Interactive Mobile Searches,” which
in turn claims the benefit of U.S. Provisional Patent Applica-
tion No. 61/149,281, filed Feb. 2, 2009, entitled “Smart Prefix
Query Optimization” and U.S. Provisional Patent Applica-
tion No. 61/115,665, filed Nov. 18, 2008, entitled “Smart
Prefix Query Optimization,” and (iv) U.S. patent application
Ser. No. 12/142,725, filed Jun. 19, 2008 and issued as U.S.
Pat. No. 8,255,382, entitled “Dynamic Menus for Multi-Pre-
fix Interactive Mobile Searches,” all of which are hereby
incorporated by reference in their entireties.

BACKGROUND

1. Field of Art

This application relates generally to the field of informa-
tion retrieval and, in particular, to multi-prefix, multi-tier,
dynamic menu and related interactive search techniques that
facilitate the retrieval of information within a mobile com-
munications environment, including the leveraging of col-
laborative “cloud” services that enable the maintenance and
sharing of such information.

2. Description of Related Art

In the last few years, web-enabled mobile telephones have
become enormously popular. More web-enabled mobile
phones ship each year than do desktop and notebook comput-
ers combined. Such mobile phones are similar to desktop and
mobile computers in that they offer display screens, a key-
board, and, sometimes, a pointing device. However, because
of portability requirements, the capabilities of the displays,
keyboards, and pointers on mobile phones are significantly
reduced. Displays are relatively small with little area to dis-
play content as well as menus, toolbars, and other navigation
and status information. The keyboards are often telephone
keypads or thumb keyboards. The pointer, when provided, is
often a scroll wheel or joystick that can be used to indicate a
direction of movement or pressed to indicate a click. Some-
times, the pointer is simply a set of arrow keys on the key-
board. Furthermore, because of speed and latency issues,
navigation among web pages is typically much slower on
mobile phones than on desktop and notebook computers.

The human interface limitations of mobile phones, com-
bined with slower navigation, significantly constrain a user’s
ability to interact with web pages. Additionally, Hypertext
Markup Language (HTML) forms are difficult to use on
mobile phones due to data input and related limitations. These
difficulties arise in many ways. For example, the mobile

10

15

20

25

30

35

40

45

50

55

60

65

2

keyboard and pointer are less effective than their counterparts
on desktop and personal computers.

Keyboards are less effective because their small form fac-
tor makes it more difficult to type characters. In some case, the
keyboard is smaller and has fewer keys. The smaller key-
boards usually require thumbing: typing with one’s thumbs
rather than using ten fingers. The reduction in keys makes it
more difficult to key in digits and special characters. Some
keyboards are telephone dial pads with multiple letters on
each key. Various technologies, including triple tap (pressing
the same key until the desired letter appears) and predictive
text, help to improve the effectiveness of such keyboards, but
the effectiveness is still far below that of a full-size keyboard.

The pointer is also less effective. HTML forms often con-
tain multiple input fields and the pointer is used to navigate
among them. Pointers on mobile phones, when available, are
less effective than pointers or mice used with desktop com-
puters for navigating among input fields, as well as hyperlinks
and other screen objects. For example, tabbing between fields
using a full-size keyboard enables the field for typing when it
has received focus. On a mobile phone, the tabbing is typi-
cally done via a directional pad and the field often has to
subsequently be selected to be enabled for typing. Addition-
ally, on desktop computers, mice can be used to move from
one field to another without having to move through the fields
in between. On mobile phones, moving from one field to
another is typically done sequentially from one field to the
next, without the ability to skip any fields along the way.

However, some web-enabled mobile phones have touch-
screens that provide for direct interaction with objects on the
display screen. For example, users can touch a screen object
directly with their fingertip or a stylus, rather than indirectly
navigate to that object via a pointing device. Yet, even this
“improved” user interface technique raises usability issues, as
the distinction between “selecting” and “activating” an object
becomes blurred. Potential solutions for distinguishing the
two include providing an icon or other visible identifier on a
portion of the object, or discerning the number of times a user
clicks or taps it, or the amount of time a user “presses down”
on the object.

In any event, the ability to select an object without also
activating it becomes particularly important in systems that
provide alternative functionality specific to a particular
object. For example, when a user activates an HTML hyper-
link in a web browser, the program typically navigates to a
new web page corresponding to the URL embedded within
that hyperlink object. The user, however, might want to exam-
ine the URL before making the decision to activate the hyper-
link.

A common mechanism for offering a user alternative func-
tionality specific to a selected object is a “context menu.”
Context menus provide a user with one or more alternative
functions available within a particular “context” or state of a
program or device, such as the selection of a particular object.
Context menu items can change dynamically as the context
changes, as different objects are selected and as a program
enters a different state.

In a mobile communications environment, however, pro-
viding context menus with which users can quickly interact is
easier said than done. The state of an information retrieval
system can change frequently, for example, as new search
results are received from remote servers (or as information
becomes known to the system, such as the time of day or a
user’s location as indicated by a mobile phone’s GPS equip-
ment). In addition to the problem noted above of distinguish-
ing the selection from the activation of an object, other con-
straints include processing speed and memory limitations on

US 9,268,829 B2

3

mobile devices, as well as bandwidth and latency limitations
inherent in mobile communications networks. These con-
straints, coupled with the many different types of information
that can be retrieved from remote web sites, for example,
make it even more difficult to provide context menu items that
are customized to particular objects or categories of objects.

In contrast to the “random” full-text searches users often
perform on desktop computers in home and office environ-
ments (in which multiple iterative searches and analyses of
resulting web pages can be completed relatively quickly due
to greater bandwidth and local computing resources), users in
a mobile communications environment often perform more
“targeted” searches for lists, schedules and other information
the existence and perhaps even the location of which is often
known in advance. Such information must nevertheless be
retrieved relatively quickly in order to be useful. For example,
common mobile searches include requests for stock quotes,
sports scores, movie times and nearby restaurants or coffee
shops, to name a few.

Targeted searches are less amenable to the random key-
word search techniques commonly employed on existing
desktop and mobile devices, in which users enter complete
keywords and navigate through results and web pages across
a large domain of web sites. Mobile devices, in particular, are
in need of solutions in which targeted information can be
found relatively quickly with minimal user interaction. Such
solutions ideally would still afford users access to both the
breadth of a large domain of information (such as the web
with its diverse collection of web sites, or a large enterprise
database) and the depth of any particular “channel” or infor-
mation category (which may lend itself to unique functional-
ity, whether within or across one or more web sites or data-
bases).

Some mobile devices support applications that have been
customized for highly targeted information retrieval, such as
the “Pocket Express” application from Handmark Inc. (http://
express.handmark.com) which provides discrete modules for
retrieving news, stock quotes, sports scores and various other
specific types of information. Though useful for rapid
retrieval of certain specific data, the domain of available
information is inherently very limited, in part because each
desired category of information requires its own custom mod-
ule. Such an approach is not very scalable, given the vast array
of information channels available via the web. Moreover,
without a generic mechanism to locate information by search-
ing within a particular module, users typically are limited to
browsing or selecting items from within each module’s pre-
defined data structure. For example, users can browse news
headlines and select one to retrieve the full story, but they
cannot search for particular news stories, much less head-
lines.

Other products have attempted to reduce user interaction to
perform targeted searches by enabling users to enter only
word prefixes or word fragments, and providing results inter-
actively as a user types characters. See, for example, a pre-
sentation at Google (http://video.google.com/videoplay?
docid=7012265262667474421&q=type%3 Agoogle+eng
EDU) in this area, or the “vTap” program from Veveo, Inc.
(http://'www.vtap.com), as well as Veveo’s various published
patent applications, including both PCT publications (WO/
2007/062035) and US publications (2008011473,
20080086704, 20070255693, 20070130128, 20070088681,
200701754, 20070050337, 20070005563 and
20060101499). While providing an information retrieval
mechanism that is more suitable to targeted searches, such
approaches nevertheless lack a generic search mechanism
that can be utilized to narrow a search request within a broad

20

25

40

45

4

domain of information channels (to provide a more focused or
targeted search), as well as provide additional functionality
specific to particular channels.

Google, in a recent talk (http:/jhtc.org/meeting.
php?meeting=march08), discussed a “multi-tier” search
technique in which a user first searches for a web site (for
example, “Wikipedia™), the result of which contains not only
a link to that site, but also a search box in which a “second-
tier” search can be typed (thus saving the step of clicking on
the link and then typing in the second-tier search). Other
similar solutions include special search keywords that iden-
tify the second-tier site within the search query itself. Such
solutions rely, however, on the differing search engines avail-
able across various second-tier sites, which not only force
users to adapt to different search query formats, but also may
provide inferior results when compared to more powerful
search engines such as the one provided by Google. A more
integrated multi-tier approach could avoid such anomalies by
providing a consistent search mechanism among various tiers
(within as well as across particular information channels),
particularly one which also offered additional context-spe-
cific functionality.

As alluded to above, another search technique that has been
employed to minimize user interaction (whether relating to
single or multiple prefix queries, or full keywords) involves
the display of “predictive text” while the user is entering a
query. For example, a system might display multiple sug-
gested phrases or keywords matching the keywords (or let-
ters) typed thus far by the user, enabling the user to select from
among these desired phrases or keywords without having to
complete the full query. It should be noted, however, that such
systems could reduce user interaction even further by display-
ing suggested query results (based upon implicit or explicit
suggested query phrases or keywords), rather than merely
displaying suggested queries.

Such an approach of providing “predictive results” could
prove even more useful in the context of specific information
domains or channels, not to mention the burgeoning field of
interactive advertising in which targeted search results
become opportunities (“ad inventory™) for displaying tar-
geted ads (which can be further targeted via additional con-
textual information, such as a user’s demographics, geo-
graphic location, viewing history, etc). Here too, a more
integrated multi-tier approach could provide not only a con-
sistent search mechanism among various tiers (within as well
as across particular information channels), but also an
improved targeted ad mechanism with increased ad inven-
tory.

Apart from the need for a more integrated and consistent
search mechanism, there is also a need for applications to
obtain access to content in a usable form, as well as to enable
users to share and retrieve such content. Whether hosted on
the desktop, or in web-based or mobile environments, appli-
cations often need to provide mechanisms for users to enter or
import content in a format that will facilitate the functionality
provided by such applications. Typically, applications (or
“apps”) maintain such content in their own proprietary inter-
nal format, perhaps allowing for the importing or exporting of
data in one or more standard data formats.

If users need to update their content over time, apps must
then provide a mechanism for users to access and update their
content. Moreover, if designated groups of users require
shared access to their content, apps must further provide a
sharing mechanism, typically including user authentication
and access control for particular activities (e.g., viewing and
modifying all or certain portions of the content).

US 9,268,829 B2

5

This need for shared content that users can update and
access (preferably from multiple different devices, e.g., via a
web browser or mobile app) has become quite common, and
has spawned a trend frequently referred to as “cloud comput-
ing,” The content might be stored on a networked storage
device or server computer (typically connected to the Inter-
net), or on users’ individual devices (networked hard disk,
desktop or laptop computer, mobile phone, etc.) that are
accessible to a remote app (or local “distributed” app) that
synchronizes such content.

While many such collaborative “cloud” apps exist (e.g.,
“TeamSnap” at www.teamsnap.com for sharing team rosters,
schedules, statistics and other related content among mem-
bers of a sports team), each such app still must “reinvent the
wheel” by implementing its own set of “cloud services”—
e.g., collaborative features and user interfaces for maintain-
ing and sharing content, including data acquisition, format-
ting, updating and presentation. As a result, there is a need for
a mechanism to enable app developers to leverage existing
cloud services, allowing them to focus their efforts on the
“vertical” features specific to their particular content domain
(e.g., team sports, trade shows, libraries, etc.), as opposed to
the collaborative cloud services common across virtually all
domains.

While some existing cloud apps have been designed as
“platforms” that provide app developers with access (e.g., via
a published API) to their cloud services and to user content,
such platforms typically are designed to enable app develop-
ers to enhance the core capabilities of the cloud apps, rather
than to repurpose user content to a particular “vertical” con-
tent domain.

For example, “social networks” such as Facebook were
designed to facilitate the creation of user communities and the
selective sharing of personal information among those com-
munities. Because Facebook emphasizes the sharing of per-
sonal information, its focus is not on the creation and acqui-
sition of structured content, much less “group content”
compiled by one or more users. It is thus not surprising that
most Facebook Apps developed on the Facebook platform
leverage this core “sharing” functionality by providing shared
access to external content (e.g., from other websites) and
activities (e.g., games), rather than repurposing existing Face-
book content.

While some Facebook Apps manipulate existing Facebook
user content (e.g., to compile birthdays of a group of friends),
they do not repurpose such content to a new content domain.
It would be difficult, for example, for members of a sports
team to maintain “team content” on Facebook, and for a
Facebook App to access and repurpose such content to enable
team members to share team rosters, statistics, etc.

Instead of providing all such functionality in a dedicated
app, such as TeamSnap, it would be desirable to leverage
existing cloud services to facilitate the maintenance and shar-
ing of such “team content.” In this regard, various collabora-
tive tools have implemented cloud services with respect to the
acquisition and maintenance of general-purpose documents.
Examples include “Google Docs” and “Google “Spread-
sheets” (and various other apps from Google, Inc.),
“Microsoft Office Live” from Microsoft Corp. and “Zoho
Docs” from Zoho Corp. Other cloud apps are targeted at
different types of documents, such as photo-sharing sites
(e.g., “Flickr”), wikis (e.g., “Wikipedia™), etc.

The cloud services provided for a collaborative app such as
“Google Docs” enable groups of users to maintain and share
general-purpose documents. Users can create and edit such
documents using many of the features found in standard word
processors. Moreover, the Google Docs platform (via

10

15

20

25

30

35

40

45

50

55

60

65

6

“Google APIs”) enables app developers to access user docu-
ments and leverage its cloud services.

Yet, as noted generally above, the primary purpose of this
platform is to enhance the core capabilities provided by apps
such as Google Docs (e.g., to provide additional functionality
with respect to these general-purpose documents), rather than
to repurpose user content to a particular “vertical” content
domain. For example, an app might add a word-processing or
other feature not found in Google Docs.

Perhaps due to the general-purpose nature of Google Docs
documents, apps created for its platform tend to treat a user’s
Google Docs documents as “atomic” objects (independent of
their content). For example, some apps generate filtered lists
of documents, while others provide for remote storage or
backup of documents.

Yet, because Google Docs allows for the maintenance of
general-purpose documents that are not restricted to particu-
lar vertical applications, its appeal is universal, justifying the
resources necessary to develop features and user interfaces
that greatly simplify the collaborative process of creating,
maintaining, presenting and sharing documents (much as
social networks have done for the creation of user communi-
ties and the sharing of personal information generally).

A sports team could easily utilize Google Docs to facilitate
the maintenance and sharing of its “team content,” as could
groups of users across a vast array of content domains (such
as trade show participants, a corporate sales force, users of a
public library, etc.). Yet, the content maintained by Google
Docs is only a set of general-purpose documents that users
can view and edit. An external app would be necessary to
provide additional “vertical” features that interpret and
manipulate this content so as to enable users to interact with
the content in a meaningful way in the context of a particular
content domain. For example, an app could provide sports-
related features akin to those found in TeamSnap (rosters,
statistics, schedules, etc.), while leveraging Google Docs to
provide the cloud services relating to the acquisition, main-
tenance and sharing of the content.

If one were to separate the acquisition, maintenance and
sharing of the content (performed in a cloud app) from the
interpretation and repurposing of the content to a particular
content domain (performed in an external “vertical” app),
then the tasks performed by users and app developers would
be greatly simplified.

Existing technologies have not adequately addressed the
problems intrinsic to targeted searching and the development
of cloud apps, particularly given the unique demands of a
mobile communications environment. Information must be
retrieved more quickly, but with less user interaction, in light
of the hardware, user interface, network bandwidth and
latency limitations inherent in such an environment. In addi-
tion, a more integrated and scalable search mechanism is
needed to allow users to request information from a broad
domain of information channels and quickly locate desired
information within one or more of those channels (including
targeted ads), preferably with the availability of additional
functionality that is tailored to those channels within the
context of user requests and other available state information.
Finally, mechanisms are needed for developing cloud appli-
cations, without sacrificing the consistency and simplicity
offered by existing cloud services.

SUMMARY

The present invention addresses the problems discussed
above by employing novel combinations of various informa-
tion retrieval techniques designed to {facilitate targeted

US 9,268,829 B2

7

searches, particularly in a mobile communications environ-
ment. Moreover, such techniques are integrated into vertical
applications that leverage generic collaborative tools to pro-
vide a consistent easy-to-use interface for the creation, shar-
ing, presentation and retrieval of documents.

In one embodiment, multi-prefix search techniques are
employed in an effort to minimize a user’s data entry require-
ments. Moreover, user queries can be executed on a remote
server interactively, during the query construction process,
with results transmitted back for display so as to enable users,
prior to entering an entire query, to revise that query or select
a desired result.

To facilitate targeted searches, users can employ multi-tier
search techniques to constrain queries to one or more infor-
mation channels. In one embodiment, users can simply select
one or more channels from a list, which could include previ-
ously designated “favorite” channels. In another embodi-
ment, users can employ multi-prefix searches to locate
desired channels as well as desired information within par-
ticular channels (and, in some cases, within multiple tiers of
one or more such channels).

For example, after locating a “yellow pages” channel with
a “first-tier” search (such as “yel pag”), the user might be
presented with a “second-tier” opportunity to search for “zip
codes.” After entering only a few digits, the user might see the
desired zip code result displayed and, upon selecting it, be
presented with a “third-tier” opportunity to search for a ven-
dor within that selected zip code. Such a multi-tier approach
facilitates targeted mobile searches by reducing user interac-
tion and data entry, and, in another embodiment, by leverag-
ing a consistent multi-prefix search mechanism among mul-
tiple tiers.

In one embodiment, a mobile communications device
includes a window, which comprises a search area and a
results area. An application is launched and a landing page is
displayed in a display area of the mobile communications
device. The search area includes a search query field. A key-
stroke is inputted into a search query field and a multi-prefix
search is performed. The landing page within the display area
is replaced by the results of the search. The results contain a
first tier of search results, which can include channels or links
to web pages associated with the user input. If the selected
search result is a channel, the channel is displayed. If itis a
web page, the web page is displayed. In other embodiments,
a separate web browser application is launched and the web
page is displayed via the web browser application. The chan-
nel or the web page may then be searched or explored. If the
desired channel is not displayed within the first tier of search
results, one or more additional keystrokes may be inputted.
Again, the results page refreshes accordingly and additional
keystrokes may be entered until the desired channel is dis-
played.

The above-described embodiments provide for multi-pre-
fix, interactive search capability on a mobile communications
device. Prefix delimiters denote the beginning of another
search prefix. In some embodiments, space characters may be
used as prefix delimiters. In other embodiments, users may
input space character keystrokes as well as alphabetic or
numeric keystrokes. [fa user’s query seeks results containing
multiple words, the user might enter one or more prefixes of
such words separated by spaces to create a multi-prefix search
query. The embodiments described above enable users to
enter fewer keystrokes to obtain a desired search result. The
search is interactive because a user is provided feedback (the
displayed search results are refreshed) with each keystroke
(or, in another embodiment, after a predefined time lapse
between keystrokes). Based on partial query results, a user

40

45

50

8

can determine that a search is complete and obtain the desired
search result without having to enter the entire text or word of
one or more search terms.

To further leverage targeted searches, in which search
results often share common attributes (including similar
types of fields and data formats), the data extracted from an
information channel (from a given web site, for example, or a
portion thereof) can, in one embodiment, be pre-processed
for functional as well as aesthetic display purposes. Whether
captured as keywords via a “web crawling” engine, or as
structured data via higher-level data extraction techniques
(with or without the assistance of the proprietor of the data),
such channel data typically is or can be organized into sepa-
rate “records” (such as individual restaurants, books or mov-
ies) containing discrete “fields” that represent different types
of data (such as titles, dates, addresses and phone numbers)
common to some or all records. This is primarily due to the
fact that most web sites employ databases (typically standard
relational, flat-file or object-oriented databases) as the under-
lying organizational structure for their data.

In one embodiment, channel data records and fields can be
indexed as such in order to enable structured searches based
upon these records and fields. In another embodiment, the
indexing process ignores data field distinctions but is opti-
mized for multi-prefix searches. The frequency of extracting
data from remote information sources (whether for indexing
or otherwise) will vary depending upon how frequently such
data typically will be updated. For example, sports scores
may be updated more frequently than movie listings, which in
turn may be updated more frequently than restaurant listings.
Whether or not field (or other) metadata is retained during the
indexing process (if any), the channel data still may be sus-
ceptible to “field recognition” sufficient to enable the perfor-
mance of discrete actions specific to a particular field. For
example, if standard ten-digit phone numbers can be
extracted from individual channel data records, such as res-
taurants, then such extracted data can be used to enable
actions specific to a particular record, such as using a mobile
phone device to call one of the restaurants displayed in the
result list of a user’s query.

Having extracted and maintained field data related to one
or more channels (or even to particular records within one or
more channels), various contextual actions can be enabled as
alternatives to simply selecting and activating a particular
record (which might activate a hyperlink to a web page related
to that record). In one embodiment, “dynamic menus” are
employed to enable a wide variety of alternative actions spe-
cific to a selected record, including calling a person or a place,
sending a selected person an email, SMS or other type of
message, utilizing a known location (of a user’s mobile
device, for example, via GPS data, or of a particular place in
the result list of a user’s query) to view the location of, or
directions to, nearby places, or to obtain a map of a desired
area, or even linking to a web page related to a particular
aspect of a record (to display, for example, images of a
selected person). The possibilities are virtually limitless, as
they may involve not only actions of which a mobile commu-
nications device is capable (such as initiating phone calls and
sending messages), but also actions relating to the channel
data being retrieved, which are as numerous as the many
different types of information available throughout the Inter-
net.

This relationship, between different fields or types of avail-
able data and the actions that relate to such data, can be
leveraged, even in a mobile communications environment,
not only by pre-processing the channel data itself, but by
pre-defining the related actions specific to that channel data

US 9,268,829 B2

9

(with or without the assistance of the proprietor of the channel
data) and transmitting them, in response to user queries, along
with the channel data query results. In one embodiment, these
actions are transmitted to a user’s mobile device in the form of
Hypertext Transfer Protocol (“HTTP”) headers that define
both the name of a dynamic menu item and the action to be
taken if the user selects and/or activates that item (and are
followed by the “body” of the transmission including, for
example, the results of a user’s query). In another embodi-
ment, if the functionality of the client application on the
user’s mobile device is integrated into a web browser (using,
for example, Javascript and an Ajax application), then these
HTTP headers can be incorporated into the body of the trans-
mission itself.

For example, if a user employs a multi-prefix query to
search a channel containing a collection of restaurant records,
the server might return a series of HI'TP headers (followed by
the resulting restaurant records matching the user’s query)
representing dynamic menu items that enable the user to
initiate a call to a selected restaurant, or obtain a map and
directions to that restaurant from a given location. Yet, if that
user queried a different channel containing, for example, a
collection of movie records, then the HTTP headers delivered
with the results of the user’s query might represent a different
set of dynamic menu items providing actions such as display-
ing movie reviews, or playing video trailers.

In other embodiments, these dynamic menu items and their
associated actions might vary depending not only upon the
channel being queried, but upon the particular channel
records the user selects. For example, in one embodiment, if
a selected record did not contain a value for a particular field
(such as a phone number), then any corresponding dynamic
menu item relating to that field (such as a “Call Restaurant”
item) would not appear, because the action could not be
performed. More generic “dynamic dynamic menus” can be
implemented, in another embodiment, by integrating menu
item names and associated actions as discrete data fields
within one or more channel records. As a result, menu item
names and actions will vary as a user selects different records,
even within a given channel. In yet another embodiment,
certain actions, such as dialing a selected restaurant, can be
invoked without requiring a user to display, select or activate
a dynamic menu item. Instead, a user might simply press a
key or push a button on the user’s mobile device (such as the
“Talk” button) to which such actions have been mapped. As
noted above, dynamic menu items might also vary depending
upon any particular state of a user’s query or other known
information, such as whether a user has logged into a particu-
lar web site (in which case a “Log In” menu item and asso-
ciated action might alternate with a “Log Out” menu item and
action, depending upon the user’s login state).

In other embodiments, information channels can be imple-
mented as a type of “smart bookmark™ in a mobile web
browser. After a user selects (or searches for) one or more
channels, the user may perform a “second-tier” search con-
strained to that channel utilizing, for example, an interactive
multi-prefix query. A mobile search engine can provide simi-
lar functionality, whether or not integrated into a mobile web
browser. Such functionality can be enabled, in one embodi-
ment, by pre-processing channel data as described above at a
remote server from which search results are transmitted.
Moreover, dynamic menus can be implemented in a manner
similar to that described above by transmitting menu items
and associated actions along with such interactive search
results. In yet another embodiment, such functionality can be
implemented as a standalone application limited to one or
more predefined channels.

20

35

40

45

50

55

10

When a consistent targeted search mechanism (such as one
that employs the interactive multi-prefix and multi-tier infor-
mation retrieval techniques described above) is coupled with
a dynamic menu mechanism that provides context-specific
functionality (tailored, for example, to particular channels,
records within or across those channels, or other state infor-
mation), users are presented with a consistent search interface
among multiple tiers across and within information channels,
and need not learn different or special search syntax. More-
over, due to the constraints of a mobile communications envi-
ronment, data entry requirements are limited, enabling users
to enter fewer keystrokes and perform fewer query iterations,
which in turn reduces network bandwidth in both directions,
due in part to the interactive nature of the multi-prefix search
mechanism. As a result, users can obtain desired results
quickly, or revise queries, even before completing an
intended query.

For example, a user with a particular preference for Star-
bucks coffee might want to locate the closest Starbucks coffee
shop quickly while traveling in an unfamiliar city, and then
call that shop to ensure the user’s order is ready upon arrival.
Upon entering a few keystrokes into a mobile phone device, a
local yellow pages channel can be located (assuming a “favor-
ite” Starbucks channel was not present) and queried for a
nearby Starbucks coffee shop, perhaps using the phone’s GPS
data by default as a base location. Due to a consistent multi-
prefix search interface, data entry is limited, and channel-
specific functionality can then be invoked. For example, a
phone number field, associated with the user’s selected Star-
bucks record, can then be leveraged via a simple mechanism,
such as a phone button or dynamic menu item, to enable the
user to call the desired Starbucks coffee shop and place an
order. Another dynamic menu item might provide a map and
directions to that Starbucks, enabling the user to arrive in time
to pick up that order. Most importantly, all of this function-
ality can be provided within the context of a highly con-
strained mobile communications environment.

In another embodiment, predictive text is employed to
generate suggestions (e.g., words or query search terms) as
the user enters keystrokes representing partial query prefixes.
In one embodiment, such suggested query search terms are
displayed, enabling the user to select desired query search
terms. In another embodiment, such suggested query search
terms are employed to generate both a set of search results
(e.g., using an index) and targeted ads (e.g., using a targeted
ad server), both of which can be presented to the user even
before the user has entered a completed query (or set of query
prefixes). In this manner, the user is presented with a set of
search results and related targeted ads with minimal text
entry, which can be updated and refreshed as the user enters
more keystrokes and query prefixes, thus resulting in an
improved targeted ad mechanism with increased ad inven-
tory.

In yet another embodiment, unique systems and methods
are employed to facilitate the development of custom vertical
applications (e.g., web-based and mobile apps, among others,
into which the above-described search techniques may be
integrated) that leverage existing collaborative cloud services
to provide a consistent and easy-to-use interface for the acqui-
sition, maintenance, presentation and sharing of user content.

The present invention allows groups of users to maintain
and share their content in a general-purpose format using
existing cloud apps, such as Google Docs. In one embodi-
ment, the content is structured in a very simple tabular format
that enables users to distinguish discrete types of content
without imposing semantics on the content that might con-
strain its use by external apps. In another embodiment, such

US 9,268,829 B2

11

content includes metadata (explicitly or implicitly by virtue
of the structure of the content) that is interpreted and repur-
posed to implement vertical features specific to a particular
content domain. In yet another embodiment, vertical client
apps rely upon an intermediate external service to communi-
cate with the cloud platform, and extract and reformat the
content, before repurposing the content to implement desired
vertical features. These vertical apps (viathe external service)
leverage the existing cloud services (e.g., via the Google APIs
that are part of the Google Docs platform) to acquire the
updated content in a usable form that can be shared in accor-
dance with the access control settings specified from within
the cloud app.

In one embodiment, a group of users create (or import) and
maintain shared content in a table within a Google Docs
document. The document is shared, not only with the other
authorized users, but also with an external service—e.g., by
specifying an email address that corresponds to, and thus
invokes, the external service to facilitate communications
with one or more vertical apps. Note that the existing sharing
mechanism provided by the Google Docs platform is
designed to enable users to share documents with one another,
but is leveraged here to enable vertical apps (via the external
service) to access, repurpose and share content among a
group of authorized users.

In one embodiment, the external service is invoked upon
receiving an email initiated by the cloud app. In another
embodiment, the external service polls a shared directory of
documents to detect changes in any of the documents (or in
their access control settings). In still another embodiment, the
cloud services include an explicit mechanism for notifying
the external service whenever the contents (or access control
settings) of a document are modified.

Regardless of how changes are identified, the external ser-
vice facilitates the implementation of the desired vertical
features of one or more vertical apps. Shared user content
(even if “shared” among a single user) is repurposed to a
particular content domain and presented by the vertical apps
to authorized users. The end result is that users of the vertical
apps have shared access to the content, including dynamic
changes made by any authorized user via the cloud app. The
presentation of the repurposed content to the users of the
vertical apps is dictated, in large part, by the data and meta-
data maintained by the cloud app.

Thus, the acquisition and maintenance of the content is
performed in an existing cloud app, while the interpretation
and repurposing of the content to a particular content domain
is performed by an external service accessible by one or more
vertical client apps. This separation greatly simplifies the
tasks performed by the users (who can generate their shared
content in advance of the app-development process) as well as
the app developers (who can leverage existing cloud ser-
vices).

The features and advantages described in the specification
are not all inclusive, and, in particular, many additional fea-
tures and advantages will be apparent to one of ordinary skill
in the art in view of the drawings, specification and claims.
Moreover, it should be noted that the language used in the
specification has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the disclosed subject matter.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A illustrates an environment adapted to support
multi-prefix, interactive searching on a mobile communica-
tions device in accordance with some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 1B is a high level block diagram illustrating the data
structure contained within the channel database in accor-
dance with some embodiments.

FIG. 2is ahigh level block diagram illustrating a functional
view of a typical mobile communications device in accor-
dance with some embodiments.

FIG.3A is a flowchart illustrating a process of client-server
interaction during multi-prefix, interactive searching in
accordance with some embodiments.

FIG. 3B is a flowchart illustrating a process of client-server
interaction during multi-prefix, interactive searching in
accordance with some other embodiments.

FIG.3C s a flowchart illustrating a process of client-server
interaction during multi-prefix, interactive searching in
accordance with some other embodiments.

FIG. 4 is a flowchart illustrating a process for interactive
searching in accordance with some embodiments.

FIG. 5 is a flowchart illustrating a process for creating a
multi-term prefix index in accordance with some embodi-
ments.

FIG. 6 is a flowchart illustrating a process for creating a
table of contents in accordance with some embodiments.

FIG. 7 is a flowchart illustrating a process for sending
interactive search results in accordance with some embodi-
ments.

FIG. 8 is a flowchart illustrating a process for sending
interactive search results in accordance with some embodi-
ments.

FIGS. 9A-9M illustrate graphical representations of
screenshots of a display of a mobile communications device
in accordance with some embodiments.

FIGS. 10A-10C illustrate graphical representations of
screenshots of a display of a mobile communications device
in accordance with another embodiment.

FIGS. 11A-11C illustrate graphical representations of
screenshots of a display of a mobile communications device
in accordance with an embodiment of the dynamic menu
aspect of the present invention.

FIGS. 12A-12G illustrate graphical representations of
screenshots of a display of a mobile communications device
in accordance with another embodiment of the dynamic menu
aspect of the present invention.

FIGS. 13A-13B are flowcharts illustrating processes for
caching portions of queries to decrease the amount of time
required to process similar future queries in accordance with
some embodiments.

FIGS. 14A-14B are flowcharts illustrating processes for
generating and utilizing hybrid lists representing records that
match combinations of multiple query prefixes in accordance
with some embodiments.

FIGS. 15A-15B are flowcharts illustrating processes for
generating and utilizing hybrid lists representing records that
match combinations of multiple repeated query prefixes in
accordance with some embodiments.

FIGS. 16A-16B illustrate graphical representations of
screenshots of a “predictive text suggestion” service that pro-
vides interactive feedback to a user, in the form of multiple
suggested queries, while the user enters keystrokes of a
desired query, enabling the user to select one of the suggested
query entries to generate a set of search results.

FIG. 17 illustrates a graphical representation of a screen-
shot of a multi-prefix “predictive text suggestion” service that
provides interactive feedback to a user, in the form of multiple
suggested queries, while the user enters keystrokes of a
desired multi-prefix query, enabling the user to select one of
the suggested query entries to generate a set of search results
(not shown).

US 9,268,829 B2

13

FIG. 18 illustrates a graphical representation of a screen-
shot of a multi-prefix “predictive result suggestion” service
that provides interactive feedback to a user, in the form ofa set
of search results generated from one or more suggested que-
ries (not necessarily displayed to the user), while the user
enters keystrokes of a desired multi-prefix query, all without
requiring the user to select one of the suggested query entries.

FIG. 19 is a block diagram illustrating the interactions, in
one embodiment of the present invention, among a client
machine (on which a user enters keystrokes of a query), a
search server and a targeted ad server, to generate a set of
search results including targeted ads.

FIG. 20 is a flowchart illustrating an embodiment of a
process of generating search results including targeted ads
while a user enters keystrokes of a query.

FIG. 21 illustrates a graphical representation of a screen-
shot of one embodiment of a multi-prefix “predictive result
suggestion” service of the present invention that provides
interactive feedback to a user, in the form of a set of search
results and targeted ads generated from one or more sug-
gested queries (not necessarily displayed to the user), while
the user enters keystrokes of a desired multi-prefix query, all
without requiring the user to select one of the suggested query
entries.

FIG. 22 illustrates an environment adapted to facilitate the
development of applications that leverage existing collabora-
tive cloud services to provide a consistent and easy-to-use
interface for the acquisition, maintenance, presentation and
sharing of user content.

FIG. 23 illustrates a sample document created via Google
Docs, a collaborative cloud app.

FIG. 24 illustrates a sample document created via Google
Spreadsheets, a collaborative cloud app.

FIG. 25 is a flowchart illustrating an embodiment of a
process performed by an external service that facilitates the
development of a vertical client app that leverages existing
cloud services.

FIGS. 26A-26C illustrate a document created via Google
Docs that is utilized by one embodiment of an external service
of the present invention to facilitate the generation of a ver-
tical client application.

FIG. 27A-27C illustrate one embodiment of a personal
directory of vertical client apps that is launched from a single
app (as contrasted with individually launchable apps).

FIGS. 28A-28C illustrate one embodiment of an authenti-
cation feature of the present invention, which restricts access
by particular users to particular app directories for which such
users are authorized.

The figures depict various embodiments of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following discussion that
alternative embodiments of the structures and methods illus-
trated herein may be employed without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION

The Figures (FIGS.) and the following description relate to
preferred embodiments by way of illustration only. It should
be noted from the following discussion that alternative
embodiments of the structures and methods disclosed herein
will be readily recognized as viable alternatives that may be
employed without departing from the principles of what is
claimed.

Reference will now be made in detail to several embodi-
ments, examples of which are illustrated in the accompanying
figures. It is noted that wherever practicable similar or like

15

20

30

40

45

55

14

reference numbers may be used in the figures and may indi-
cate similar or like functionality. The figures depict embodi-
ments of the disclosed system (or method) for purposes of
illustration only. One skilled in the art will readily recognize
from the following description that alternative embodiments
of the structures and methods illustrated herein may be
employed without departing from the principles described
herein.

1. Search Architecture

FIG. 1A is a block diagram illustrating an architecture for
providing multi-prefix, interactive search capability on a
mobile communications device. The network 122 enables
communications between a client 118 and a search server 128
coupledto adata store 112. Thus, the network 122 can include
links using technologies such as Wi-Fi, Wi-Max, 2G, Univer-
sal Mobile Telecommunications System (UMTS), 3G, Eth-
ernet, 802.11, integrated services digital network (ISDN),
digital subscriber line (DSL), asynchronous transfer mode
(ATM), InfiniBand, PCI Express Advanced Switching, etc.
Similarly, the networking protocols used on the network 122
can include the transmission control protocol/Internet proto-
col (TCP/IP), multi-protocol label switching (MPLS), the
User Datagram Protocol (UDP), the hypertext transport pro-
tocol (HTTP), the simple mail transfer protocol (SMTP), the
file transfer protocol (FTP), lightweight directory access pro-
tocol (LDAP), Code Division Multiple Access (CDMA),
Wideband Code Division Multiple Access (WCDMA), Glo-
bal System for Mobile communications (GSM), High-Speed
Downlink Packet Access (HSDPA), etc. The data exchanged
over the network 122 can be represented using technologies
and/or formats including the hypertext markup language
(HTML), the extensible markup language (XML), etc. In
addition, all or some of links can be encrypted using conven-
tional encryption technologies such as the secure sockets
layer (SSL), Secure HTTP and/or virtual private networks
(VPNs) or Internet Protocol security (IPsec). In another
embodiment, the entities can use custom and/or dedicated
data communications technologies instead of, or in addition
to, the ones described above. Depending upon the embodi-
ment, the network 122 can also include links to other net-
works such as the Internet.

The client 118 executes a browser 120, comprises client
applications 124 and can connect to the search server 128 via
anetwork 122, which is typically the Internet, but may also be
any network, including but not limited to a LAN, a MAN, a
WAN, a mobile, wired or wireless network, a private network,
or a virtual private network, and any combination thereof.
While only a single client 118 is shown, it is understood that
very large numbers (e.g., millions) of clients are supported
and can be in communication with the search server 128 and
search result update module 116 at any time. The client 118
may be a mobile communications device similar to the one
described in FIG. 2.

The search server 128 includes a search result update mod-
ule 116, a multi-prefix search module 150, a multi-tier search
module 152, and a result delivery search module 154. The
search server 128 facilitates multi-prefix, multi-tier, interac-
tive searching by enabling a user to enter prefixes of words or
text of a search query to obtain various tier levels of search
results. The search server 128 also facilitates multi-prefix,
interactive, result delivery searching by enabling a user to
enter prefixes of words or text to obtain desired results with-
out having to go through intermediary steps to get those
results. The search server 128 also facilitates multi-prefix
searching on a mobile communications device.

US 9,268,829 B2

15

The search result update module 116 facilitates the update
of'the search results when a user inputs a keystroke (or pauses
for a certain amount of time after entering multiple key-
strokes), therefore allowing for interactive search capability.
Multi-prefix search module 150 facilitates multi-prefix
searching by providing the user the ability to enter the prefix
of one or more words of an entire query to obtain desired
search results. The multi-tier search module 152 facilitates
multi-tier searching by providing different tier levels of
results. The result delivery search module 154 facilitates
result delivery by searching a plurality of data fields associ-
ated with a particular data set in order to produce desired
results. Further description regarding usage of these modules
is provided below.

The search server 128 is coupled to a data store 112. The
data store 112 includes a channel database 114, an index
database 130 and a table of contents database 132. A channel
represents a content category, such as news, flight informa-
tion, recipes, etc. The channel database 114 contains records.
Each record contains a heading and one or more URLs. The
record also contains an indication as to whether each URL
references a channel. Then index database 130 contains lists
of'prefixes and, for each prefix, alist of record IDs that contain
words with the prefix, as well as relevancy factors for use in
ranking. The table of contents database 132 contains prefix
entries to aid in traversing the index. The number of entries
contained in the table of contents database 132 affects the
time spent traversing the index to find relevant record ID lists.
A greater number of entries in the table of contents will slow
down the search of the table of contents database 132, but
reduce the time spent traversing the index to find relevant
record ID lists. Fewer entries contained in the table of con-
tents database 132 will speed up the search of the table of
contents, but increase the time spent traversing the index to
find relevant record ID lists. Further description regarding
usage of these modules is provided below.

As illustrated in FIG. 1B, the channel database 114
includes channel data sets 140. Each channel data set 140
includes a list of records 142. Each record contains data fields
144. Each record is associated with at least one heading and a
“deep link” (a hypertext link to a page or a web site other than
its home page). In some embodiments, each record contains a
heading and a parameter that can be inserted into a URL
template to create a deep link. A heading may be the displayed
title associated with a particular record. For example, in a list
of Wikipedia articles, an example of a heading may be “John
Fitzgerald Kennedy,” “High School Musical,” or “World
Wide Web.” Headings in a directory of people might include
a person’s name, telephone number or address.

Each data field 144 contains identifying information
related to that particular channel. A data field 144 may also
contain other information related to that particular channel.
For example, in an AMAZON™ Books channel, the data
fields 144 may contain items such as a title, an author, an
International Standard Book Number (ISBN) and a price. In
a White Pages channel, the data fields 144 may contain a
name, an address, a home phone number and a mobile phone
number. In some embodiments, one data field 144 contains
multiple items. In other embodiments, each data field 144
contains separate items.

In some embodiments, a data field 144 may be associated
with additional items that represent terms that are equivalent
to the original items contained in the data field. For example,
in a name data field containing “Robert,” that data field may
be associated with terms such as “Bob,” “Bobby” or “Rob”
(i.e. terms that are equivalent to the term “Robert”).

15

20

40

45

50

55

16

Those skilled in the art will recognize that the search server
128 is implemented as a server program executed on a desk-
top computer, laptop computer, or server-class computer
comprising a CPU, memory, network interface, peripheral
interfaces and other well known components. The computers
themselves preferably run an open-source operating system
such as LINUX, have generally high performance CPUs, 1G
or more of memory, and 100G or more of disk storage. Of
course, other types of computers can be used, and it is
expected that as more powerful computers are developed in
the future, they can be configured in accordance with the
teachings here. The functionality implemented by any of the
elements can be provided from computer program products
that are stored in tangible computer accessible storage medi-
ums (e.g., RAM, hard disk, or optical/magnetic media).

For purposes of illustration, FIG. 1A shows the search
result update module 116, the multi-prefix search module
150, the multi-tier search module 152, the result delivery
search module 154, the channel database 114, the index data-
base 130 and the table of contents database 132 as discrete
modules. However, in various embodiments, any or all of the
result update module 116, the multi-prefix search module
150, the multi-tier search module 152, the result delivery
search module 154, the channel database 114, the index data-
base 130, and the table of contents database 142 can be
combined for operation on a single computing device having
storage. This allows a single module to perform the functions
of one or more of the above-described modules. Further, the
search server 128 and the data store 112 are shown as discrete
components for purposes of illustration. In other embodi-
ments, the search server 128 and the data store 112 can also be
combined for operation on a single computing device having
storage.

FIG. 2is ahigh level block diagram illustrating a functional
view of a typical mobile communications device 200 in accor-
dance with some embodiments. Illustrated are at least one
processor 202 coupled to a bus 204. Also coupled to the bus
204 are a memory 206, a storage device 208, a graphics
adapter 212, a network adapter, and a mobile transceiver 210
including a display, keyboard, and optionally, a pointing
device (not shown). In some embodiments, the display is a
touchscreen display. In one embodiment, the functionality of
the bus 204 is provided by an interconnecting chipset.

The storage device 208 is any device capable of storing
data, such as a memory stick, a secure digital (SD) card, a
solid-state memory device or a hard drive. The memory 206
stores instructions and data used by the processor 202. The
optional pointing device (not shown) is used in combination
with the keyboard (also not shown) to input data into the
mobile communications device 200. The graphics adapter
212 displays images and other information on the display of
the mobile communications device 200. The network adapter
216 couples the mobile communications device 200 to a local
or wide area network.

As is known in the art, a mobile communications device
200 can have different components from those shown in FIG.
2. Furthermore, the mobile communications device 200 can
lack certain illustrated components or include certain com-
ponents not shown.

As is known in the art, the mobile communications device
200 is adapted to execute computer program modules for
providing functionality described herein. As used herein, the
term “module” refers to computer program logic utilized to
provide the specified functionality. Thus, a module can be
implemented in hardware, firmware and/or software. In one
embodiment, program modules are stored on the storage

US 9,268,829 B2

17

device 208, loaded into the memory 206 and executed by the
processor 202. The modules may be loaded as part of the
client applications 124.

Embodiments of the entities described herein can include
other and/or different modules than the ones described here.
In addition, the functionality attributed to the modules can be
performed by other or different modules in other embodi-
ments. Moreover, this description occasionally omits the term
“module” for purposes of clarity and convenience.

II. Search Operation

A. General Search Operation

FIG. 3A is a flowchart illustrating a process 300 of client-
server interaction during multi-prefix, multi-tier, interactive
searching in accordance with some embodiments. An appli-
cation for multi-prefix, multi-tier, interactive searching is ini-
tialized 301 by a mobile communications device. The server
sends 302 an initial information to display in a window of the
mobile communications device. The window is displayed
303 on a display of the client device. In one embodiment, the
window appears like the window 902 as illustrated in FIG.
9A. The window 902 includes a search area 903, which
includes a search query field 904, and a display area 905. The
display area 905 includes a landing page 901, which contains
headings 906 for associated channels for user selection. Each
heading 906 refers to either another channel (list of headings)
or to a URL, which may be a deep link into a web site. The
headings 906 are links to categorized information, such as
news, celebrity photos or flight status. The headings 906 may
also be links to various websites, such as gmail.com and
fandango.com. A keystroke associated with an alphanumeric
character is input 304 on the mobile communications device
in the search query field 904 as shown in FIG. 9A, and sent
304 to the server. The user input is received 306, a search 307
of'the channel database 114 is performed using the input, and
sent 308 to the client. The display area 905 is updated accord-
ingly. The display area 905 displays 309 a first tier of search
results, which include channels associated with the user
input. As shown in FIG. 9B, a user inputs “St” in the search
query field 904, and the display area is refreshed to display
results corresponding to the “St” search query. In this
example, “St” corresponds to search results “STAR-
BUCKS™ Store Locator,” “FlightView Airline Flight Sta-
tus,” “Stock Quotes,” etc. In one embodiment, the displayed
result, such as shown in FIG. 9B, may also include other
organizational information such as the labels 910 (“Popular
Channels” or “All Channels”) to provide the user with addi-
tional information such that the headings are intuitively rec-
ognized and understood by the user. The displayed results
may also include selectable links 915 to channels or websites
as shown in FIG. 9B.

If the desired result is displayed (310—Yes), a result may
be selected 312. The result selection is received 314 and the
corresponding channel or web page is sent 315 to the client.
The channel or web page is then displayed 316 on the display
of the mobile communications device. The selection directs
the user to the channel or website corresponding to the
selected result where the user can input 318 a search query in
the channel or web page or simply explore 318 the displayed
page. In some embodiments, if the result selected is a web
page, a separate web browser is launched to display the web
page. As shown in FIG. 9C, the user has selected the STAR-
BUCKS™ Store Locator channel 906 (FI1G. 9B). This selec-
tion directs the user to the STARBUCKS™ Coffee Store
Locator channel as shown in FIG. 9C.

If the desired result is not displayed (310—No) within the
search results, another keystroke may be inputted 304. Again,
the user input is received 306, the channel database 114 is

10

15

20

25

30

35

40

45

50

55

60

65

18

searched 307, results are sent 308, and the display area is
refreshed accordingly by displaying 309 the search results.
Additional keystrokes may be entered until the desired chan-
nel is displayed. With each keystroke, the results list is
updated by the search result update module 116.

In some other embodiments, users may input space char-
acter keystrokes as well as alphabetic or numeric character
keystrokes. As shown in FIGS. 9E and 9F, a user has selected
the Starbucks Coffee Locator channel and has entered a
search query in the search query field 904 that includes a
prefix delimiter, such as a space character. The user’s search
entry in the search query field 904 represents the prefixes for
each word of a multi-prefix search query. The user has entered
a first prefix (first letter or first several letters of a word or
text), separated by a space character, and a second prefix, and
is provided with a list of search results corresponding to the
user input by the multi-prefix search module 150. This allows
users to input fewer keystrokes to obtain the desired search
results. In other embodiments, a wild card character or a
symbol can be used in place of spaces between multiple
prefixes of a search.

The method described above provides for a multi-prefix,
interactive search capability. The search is multi-prefix
because if the search term contains multiple words, the user
enters the prefix of one or more words of the multi-term
search query, therefore, providing the capability for users to
enter less keystrokes and obtain a desired search result. The
search is interactive because a user is provided feedback
(displayed search results) with each keystroke. Based on par-
tial query results, a user can determine when the search is
complete and can obtain the desired search result without
having to enter the entire search term. Therefore, fewer key-
strokes are needed as compared to searching using the current
technologies available.

FIG. 3B is a flowchart illustrating a process 320 of client-
server interaction during multi-prefix, interactive searching
in accordance with another embodiment. A channel or web
page is sent 315 to the client. The window, including a search
area and a display area, of the channel or web page is then
displayed 316 on the display of the mobile communications
device. In one embodiment, the window may look like the
window 920 as illustrated in FIG. 9C or 91. The search area
921 includes a search query field 924. A user inputs 324
keystrokes in the search query field 924. The server receives
326 the user input and searches 328 the data fields of the
records in the channel for search results that match the search
query. For example, if the White Pages channel was being
searched, the server would receive the search query and
search the name, address, and telephone number fields of the
records to determine if there was a match for the received
search query. The result list is then sent 329 to the mobile
communications device.

Search results 926 that match the search query are dis-
played 330 in the display area 933 as shown in FIG. 9D. In
some embodiments, as shown in FIG. 9D, additional infor-
mation 925 associated with the search result is displayed in
the display area 933 along with the search result 926. If the
desired result in the list of results 926 is displayed (332—
Yes), then the desired result may be selected 334 and addi-
tional information about the result may be displayed. How-
ever, if the desired result is not displayed in the list of results
(332—No), another keystroke may be inputted 324 to receive
and display different search results. Space character key-
strokes may also be inputted to indicate that the search query
has multiple terms.

US 9,268,829 B2

19

When the server 128 searches for a search result that
matches the search query, the server searches the various data
fields and records within a channel data set. In one embodi-
ment, the search is performed on structured data, such as the
data set described in the channel database 114. In other
embodiments, the search is performed on unstructured data,
which includes data and links without categorized fields.

FIGS. 9C-9G provide an illustration of the method. In FIG.
9C, the window 920 for the STARBUCKS™ Coffee Locator
includes a search area 921 and display area 933. The search
area 921 includes a search query field 924. The display area
933 in FIG. 9C shows an initial landing page 931. In some
embodiments, the landing page 931 may also include select-
able links 932 to additional information. Keystrokes, which
include alphanumeric characters, are entered into the search
query field 924 as seen in FIG. 9D. Search results 926 are
displayed in the display area 933 as shown in FIG. 9D. Addi-
tional keystrokes are entered into the search query field 924
(FIGS. 9E and 9F) to input a second prefix, and the search
results list 926 is refreshed with search results that match the
updated search query having two prefixes. In the illustrations
provided in FIGS. 9E and 9F, the prefix of a word is entered
into the search query field 924, followed by a space character
and the prefix of another word of the search term. A prefix is
the first letter or first few letters of a word of the search term.
When the desired result is displayed, a result is selected and
the display area 933 is updated to display additional informa-
tion regarding the search query. In this example, the records
and data fields of the STARBUCKS™ Coffee Locator chan-
nel have been searched to determine the matching search
results. Inthis case, the data fields contain information related
to location and telephone contact of the STARBUCKS™
stores that match the search query. Those skilled in the art will
understand how the present invention is advantageous
because simply by entering the keystrokes and selecting a
single channel, the mobile communications device displays
the exact web page or channel the user is seeking.

FIGS. 9H-9M also provide an illustration of the above. The
Caltrain Train Schedule channel (950 in FIG. 9H) has been
selected to display the associated landing page 955 (FIG. 91)
in the display area 953 of the window 952 of the channel.
Characters of a search query are entered into the search query
field 954. When the desired result is displayed, such as in FIG.
91, the result heading may be selected and additional infor-
mation may be received. In this example, the Burlingame—
Mountain View schedule is selected and the schedule page
960 is displayed as shown in FIG. 9M.

Another illustrative example of the flow chart in FIG. 3B
may be seen in FIGS. 10A-10C. FIG. 10A shows a window
1002 displaying the Loyola School Directory channel. The
window 1002 includes a search area 1003 and a display area
1005. The search area 1003 includes a search query field
1004. The display area 1005 of FIG. 10A includes a landing
page 1007 that contains instructions 1006 and other informa-
tion 1008. In some embodiments, the landing page 1007 may
also include links to additional information (not shown). In
this example, a prefix is entered into the search query field
1004 and display area 1005 is refreshed to show results 1022
as shown in FIG. 10B. The search results 1022 include infor-
mation associated with a record. The information represents
the items contained in the data fields associated with the
record. In this example, the additional information 1014
includes name of parent(s), name(s) of siblings, grade and
name of teacher, and address, which is associated with the
record “Elayna Pacman.” As shown in FIG. 10C, when an
additional prefix is entered into the search query field 1004,
the display area 1005 is refreshed with new results 1024. In

10

15

20

25

30

35

40

45

50

55

60

65

20

this example, the prefixes (“El 5”) are found across multiple
data fields, therefore displaying results matching a name that
includes “El” and a grade that includes “5.” In some embodi-
ments, the result 1022 or 1024 may be selected to display
additional results.

FIG. 3C is a flowchart illustrating a process 340 of client-
server interaction during multi-prefix searching on a mobile
communications device in accordance with some embodi-
ments. An application for multi-prefix searching is initialized
341 and information is sent 342 to be displayed in a window
of'the mobile communications device. A window is displayed
343 on a display of a mobile communications device. A
search query is input 344 into a search query field, and a
confirmation is made to indicate that the search query string is
complete and the search query is sent 344 to the server. The
search query is a multi-term search query and contains the
prefix of at least one of the terms of the entire search query.
The search query is received 346 by the server, which sends
347 a result list to be displayed 348 on the mobile communi-
cations device. If the desired result is displayed (350—Yes),
the result may be selected 352 and additional information
may be displayed. If the desired resultis not displayed (350—
No) the process is started again when another search query is
input and sent to the server.

FIG. 4 is a flowchart illustrating a process 400 for interac-
tive searching in accordance with some embodiments. The
mobile communications device displays 402 a window (902,
FIG.9A), which contains instructions. In some embodiments,
the display of the mobile communications device initially
displays a first tier of channels, which is obtained by submit-
ting a base channel uniform resource location (URL) with no
search terms. The system monitors 404 for the user input. The
user then performs a sequence of actions. The user can key
characters into the input area (as shown in FIG. 9B), or the
user can select an item from the list of headings displayed on
the window. If the user inputs a key character, or keystroke,
into the input area (406—Yes), the user input field is updated
408. A query URL is constructed 410 and submitted by com-
bining the base URL with the characters that the user has
inputted in the search query field. The resulting records from
the URL are retrieved and the headings containing those
results records is displayed in the output area. The system
continues to wait 404 for another user input. The aforemen-
tioned steps are repeated until the user selects an entry.

If the user did not input a key character, or keystroke
(406—No), a determination 414 is made as to whether an
entry is selected. If the user selects an entry (414—Yes), a
determination 416 is made to determine whether the entry is
marked as a channel. If the entry is marked as a channel
(416—Yes), the base URL is updated 412 to the URL in the
selected record and the search query field is cleared 412. Ifthe
entry is not marked as a channel (416—No), the web browser
is activated and the browser is directed 418 to the URL in the
selected record.

FIG. 5 is a flowchart illustrating a process 500 for creating
a multi-term prefix index in accordance with some embodi-
ments. Each record of the database contains a heading and
one or more URLs. The record also contains an indication
whether each URL references a channel. The headings in
each record are conditioned 502, which includes removing
extra space characters from the beginning and end of the
headings. Records with duplicate headings are removed 502.
The records are sorted and assigned 504 sequential IDs. In
some embodiments, the record IDs can be used as the rel-
evancy factors when ranking the results, thereby causing the
results to be displayed in sorted heading order without having
to sort the headings themselves. The headings are split into

US 9,268,829 B2

21

words and a list of words is constructed 506. Utilizing the list
of words, a list of word prefixes is created and the number of
incidences is counted 508. An optimization of the list is
performed. Prefixes that do not help to disambiguate between
headings are not needed in the index. For example, given the
headings “rat,” “sat,” “saw” and “say,” the prefix “so” disam-
biguates as well as the prefix “s,” does not need to be

Gy
S

)7 S0
included in the index. Entries that are prefixes of other pre-
fixes and have the same incidence are removed 510 from the
list of word prefixes. From the example above, “s” is a prefix
of “so” and both occur three times; therefore, “s” does not
need to be included in the index.

Index entries are created 512 for each prefix in each word
in each heading of the record if the prefix is in the list of
disambiguating prefixes. Each entry contains the prefix and
the record ID, as well as the position that the word occurred in
the heading, which is used as a relevancy factor in ranking.
The entries are sorted 514 in alphabetical order by prefix. The
list of index entries is split 516 into lists—one list for each
prefix. The list of record IDs is compressed 518.

FIG. 6 is a flowchart illustrating a process 600 for creating
a table of contents in accordance with some embodiments.
The table of contents is created based on a threshold. Smaller
threshold values cause the table of contents to contain more
entries, which slows the search of the table of contents, but
reduces the time spent traversing the index to find relevant
record ID lists. Larger threshold values cause the table of
contents to contain fewer entries, which speeds the search of
the table of contents, but increases the time spent traversing
the index to find relevant record ID lists. With this trade-off in
mind, the threshold value is user-definable and can be
adjusted to maximize prefix search performance on a particu-
lar hardware system and user preferences.

Process 600 begins and two offsets are initialized 602 at the
start of the index. The record ID list that begins at the offset is
retrieved 604 from the index. The prefix and length are
retrieved from the record ID list. The difference between the
offset and the last offset is determined 606. If the difference
between the offset and the last offset is smaller than the
predetermined threshold (606—No), the length is added 612
to the offset. A determination 614 is then made as to whether
the offset is greater than the size of the index. If the offset is
greater than the size of the index (614—Yes), then the cre-
ation of the table of contents is complete. If the offset is not
greater than the size of the index, the record ID list that begins
at the offset is retrieved 604 from the index.

If the difference between the offset and the last offset is at
least as large as the threshold (greater or equal to the thresh-
0ld) (606—Yes), then the prefix and offset are appended 608
to the table of contents. The last offset is then set 610 to the
offset and the length is added 612 to the offset.

FIG. 7 is a flowchart illustrating a process 400 for sending
interactive search results in accordance with some embodi-
ments. When a query is received, it is split 702 into individual
prefix terms. For each prefix, the record ID list corresponding
to the particular prefix is retrieved 704 (a detailed description
of the process of this step is outlined in the description for
FIG. 8 below). A “next ID” for each list is set to be the first ID
in each list and a results list that holds certain information
regarding each match is initialized 706. A determination 708
is made as to whether the next IDs are the same for all ID lists.
Ifthey are the same (708—Yes), the ID and relevancy factors
are added 710 to the result list, which contains a list of all
record IDs that occurred in each of the prefix lists, and,
therefore, match the query. If that ID is the last ID in any of the
1D lists (712—Yes), then the results are ordered 714 by rel-
evancy and the result list sent 716 for display.

10

15

20

25

30

35

40

45

50

55

60

65

22

Ifthe ID is not the last ID on the list (712—No), the current
1D is dropped 718 from each list. Again, a determination 708
is made as to whether the next IDs are the same for all ID lists.
If the next IDs are not the same (708—No), the list with the
smallest next ID is selected 720. Ifthat ID is the last ID in any
of the ID lists (722—Yes), the result list is ordered 714 by
relevancy and sent 716 for display. If that ID is not the last ID
in any of'the ID lists (722—No), that ID is dropped 724 from
that ID list and a determination 708 is made as to whether the
next IDs are the same for all ID lists.

FIG. 8 is a flowchart illustrating a process 800 for sending
interactive search results in accordance with some embodi-
ments. In particular, FIG. 8 is a detailed description of step
704 from FIG. 7 and illustrates the retrieval of a record ID list
that corresponds to a given search term. The first part of the
process 800 involves scanning the table of contents to find the
largest entry that is no larger than the search term. An index
offset is initialized 802 to the beginning of the index. The
process is initialized 804 to start at the beginning of the table
of contents. The next entry in the table of contents is retrieved
806, thus yielding a prefix and an offset into the index. A
determination 808 is made as to whether the prefix is less than
the search term. If the prefix is smaller than the search term
(808—Yes), then the index offset is set to the offset that was
retrieved from the table of contents and the process repeats at
step 806.

If the prefix is not smaller than the search term (808—No),
then the index is processed 812 at the index offset and the
table of contents scan is complete. The next entry from the
index is retrieved 814. A determination 816 is made as to
whether the prefix is smaller than the search term. If the prefix
is smaller than the search term (816—Yes), the process
repeats at step 814.

If the prefix is greater than the search term (816—No), the
scanning of the index is completed and a determination 818 is
made as to whether the search term is prefix of the prefix. If
the search term is a prefix of the prefix, then the record ID list
is used 820 at the index offset. If the search term is not a prefix
of'the prefix, then no match is found for the particular search
term.

B. Smart Prefix Query Optimizations

In certain situations, such as those involving relatively
large data sets, the performance of the processes described
above can be improved by implementing certain optimiza-
tions (described below) that are targeted to relatively large
information domains without significantly impacting perfor-
mance with respect to smaller data sets. For example, the
English version of Wikipedia includes over 3 million articles
containing over 1 billion words, and is roughly 25 times as
large as the Encyclopedia Britannica (the next largest English
language encyclopedia). Yet, even without these optimiza-
tions, the performance of certain embodiments of the above
processes could be considered acceptable. Yet, the perfor-
mance of such processes with respect to the WorldCat biblio-
graphic database (which contains over 150 million records
from over 70,000 libraries, and is roughly 60 times larger than
Wikipedia English) is noticeably slower unless certain opti-
mizations are implemented.

To understand certain performance bottlenecks that result
from processing relatively large information domains, and to
identify potential optimizations or other improvements, it is
helpful to examine certain steps illustrated in FIGS. 7 and 8
discussed above. For example, after splitting a query into
multiple prefixes in step 702 of FIG. 7, each prefix is pro-
cessed in step 704 (illustrated in greater detail in FIG. 8),
using the TOC to retrieve the record ID list identifying those
records which contain that prefix.

US 9,268,829 B2

23

In one embodiment, the TOC for typical data sets contains
between a few hundred and a few thousand entries. The
WorldCat TOC contains over 325,000 entries. Nevertheless,
even searching this many entries in a linear fashion does not
impose a noticeable performance penalty, indicating that this
step is not a significant bottleneck. A multi-tier TOC could of
course be generated if desired (i.e., creating “next-level”
TOC:s for each higher-level TOC) to reduce the time required
to linearly search the TOC.

The lists of record IDs corresponding to each prefix in a
query are then retrieved (e.g., from disk into memory) and
intersected to yield a result list of record IDs satisfying the
constraints of the query. In one embodiment, the record ID
lists corresponding to each prefix in the query are retrieved
and intersected with one another simultaneously. In other
words, because the lists have been previously sorted in this
embodiment, it is relatively straightforward to process mul-
tiple lists in parallel to generate a sorted result list containing
only those items found in every list.

The result list is then ranked to display to the user an
ordered list of the most “relevant” results. In one embodi-
ment, rather than ranking all of the elements in the result list
(since only the “top N” elements will be displayed to the
user), a “heap” is employed to identify and rank the top N
elements without having to rank the remaining elements in
the result list.

As a general matter, the processing time required to gen-
erate a result list is affected by a number of different factors.
One significant factor is the “retrieval time”—i.e., the time
required to retrieve the lists from memory, which increases
significantly for longer lists that require more disk accesses.
Longer lists, even if stored entirely in RAM, may also sig-
nificantly impact overall processing time. The overall pro-
cessing time is typically proportional to the “intersection
time” or time required to generate a single list by intersecting
multiple lists. This intersection time is in turn proportional to
the number of elements in the longest list, and in the result list.
In addition, the overall processing time is proportional to the
“ranking time” or time required to rank the elements in each
list. Even when a “heap” is employed to identify and rank
only the top N elements for display to the user, the ranking
time required for this heap-based ranking is proportional to
the number of elements in the result list.

Thus, it is apparent that one key factor or bottleneck affect-
ing the overall query-processing performance time is the size
of the lists corresponding to each prefix in the query, in
particular the existence of one or more lists with a relatively
large number of elements. Not surprisingly, lists correspond-
ing to single-letter prefixes (such as the letter “a”) are expo-
nentially larger than those corresponding to longer prefixes.
The size of a list drops quickly as the length of the corre-
sponding prefix increases, and as the number of prefixes in a
query increases. In fact, particularly short queries (e.g., que-
ries having a length of 3 or fewer characters, measuring the
total number of characters in a query, even including the
spaces between prefix terms) tend to require significantly
more overall processing time than do longer queries.

For example, the “a” list for the WorldCat data set contains
over 60 million record IDs, while the “ab” list contains fewer
than 3 million record IDs and the “abe” list contains fewer
than 250,000 record IDs. Moreover, the result list from the “a
b” query (i.e., the list of IDs for those records that contain both
word(s) beginning with “a” and word(s) beginning with “b”)
contains fewer than 4 million record IDs and the “ab e” query
yields aresult list containing fewer than 2 million record IDs.
Asnoted above, retrieving long lists into memory can resultin
multiple disk accesses that significantly increase overall pro-

10

15

20

25

30

35

40

45

50

55

60

65

24

cessing time, in addition to the time required to intersect long
lists with one another and rank a relatively long result list.

In one embodiment, query processing time is reduced sig-
nificantly by caching the lists that result from processing
extremely short queries (e.g., with a length of 3 or less). The
first time such a short query is encountered, the sorted result
list of record IDs is stored for use should the same short query
be encountered in the future. It should be noted that relatively
short queries are also more likely to recur than are longer
queries, thus further justifying the caching of such queries.
During the processing of these subsequent queries, the results
will be available instantly, as the entire ranked result list will
already be stored in the cache.

Moreover, in one embodiment, the cache can be preloaded
with result lists representing certain very short queries, such
as those corresponding to single-character prefixes (“17, “a”,
etc) or even queries with combinations of these very short
prefixes (e.g., all pairs of single-character prefixes). In one
embodiment, result lists are cached corresponding to queries
containing every paired combination of 1-character, 2-char-
acter and even 3-character prefixes (or even pairs of longer
prefixes, depending upon available memory). Although the
number of query result lists stored in the cache may be quite
large (thousands or even millions), the sizes of such lists tend
to be relatively small (as noted above, exponentially smaller
than the sizes of the original lists corresponding to single-
character and other short prefixes). A few gigabytes of cache
storage can thus yield dramatic performance improvements.

In one embodiment, a threshold overall query length (e.g.,
L=3) can be employed to cache only those prefixes (whether
preloaded or encountered at query time) whose total length
(even including spaces between prefix terms) does not exceed
that threshold. In another embodiment, a threshold process-
ing time (e.g., t=0.1 seconds) can be employed to cache only
those queries whose overall processing time (including
retrieval and intersection of all lists and ranking of the result
list) exceeds that threshold.

Of course, these optimizations can also be combined—
e.g., preloading the cache with all result lists of 3-character
and shorter queries, and then supplementing the cache with
all result lists from queries that require more than 0.1 seconds
to process. Moreover, other factors (beyond the overall query
length and query processing time) can also be considered,
individually and in combination. For example, the existence
or prevalence of short prefixes (e.g., those with no more than
2 characters) could be a factor in the determination of whether
to cache a query containing such prefixes. The number of
prefix terms (e.g. a threshold of 3 or fewer terms) could be
another such factor. Such factors can be weighted (e.g., based
on relative priority) and combined to calculate a threshold
function that can be used to determine whether to cache the
results of a particular query (whether preloaded or at query
time).

Moreover, the result lists from queries for which those
factors or combinations thereof can be predetermined (e.g.,
all queries of 3 or fewer characters) can be preloaded into the
cache, while the lists resulting from queries for which certain
factors cannot be predetermined (e.g., the overall query pro-
cessing time or the number of prefix terms in a query) must be
computed at query time, after which a determination can be
made as to whether to cache such lists of query results. The
overall query processing time might even differ for the same
query dueto other real-time factors (e.g., memory usage), and
could be outweighed by factors such as the overall query
length, the length of individual prefix terms or the number of
prefix terms (or perhaps other factors).

US 9,268,829 B2

25

Regardless of which function or specific combination of
these optimizations is employed, the goal is the same—to
cache the record ID lists corresponding to queries that require
(or will likely require) significant processing time when first
encountered and/or will (or may be likely to) recur in a sub-
sequent search in the future.

Turning to the query-processing embodiment illustrated in
FIG. 13A, it can be assumed that the lists of record 1Ds
corresponding to the prefixes in the query being processed
have been retrieved from the index. In addition, the cache may
or may not be preloaded with certain query result lists as
noted above. The cache is inspected in step 1310 to determine
whether it already contains the result list for the current query.
If so, that cached query result list is loaded in step 1320 and
the results are delivered to the user in step 1330. It should be
noted that no further processing is required because the
results were previously ranked.

In the event that step 1310 reveals that the result list for the
current query had not previously been cached, then the result
list for the current query is computed in step 1312 (including,
as described above, the intersection of the lists of record IDs
for each prefix and ranking of the result list). In addition, a
function of this query is computed in step 1314. As noted
above, that function might be as simple as returning the over-
all length of the query, or, in another embodiment, the func-
tion’s value might be calculated by assigning a weight (e.g., a
multiplier) to that overall length, as well as to the number of
prefix terms in the query and the length of those terms (and
perhaps other factors potentially relevant to the overall pro-
cessing time).

In any case, the value of this function is then compared in
step 1316 to a predetermined threshold (L) to determine
whether to cache the result list for the current query before the
results are delivered to the user in step 1330. If the function
does not exceed the predetermined threshold, then the result
list is first stored in the cache in step 1318. In either case, the
results are then delivered to the user in step 1330.

As noted above, regardless of whether the cache is pre-
loaded, the decision as to whether the cache the results of
processing a query can be based solely on the time required
for that processing to occur. In other words, to avoid repeating
a relatively lengthy query processing procedure should that
same query occur in the future, the results can simply be
cached if they exceed a certain processing time threshold.

Turning to the query-processing embodiment illustrated in
FIG. 13B, it can again be assumed that the lists of record IDs
corresponding to the prefixes in the query being processed
have been retrieved from the index, and that the cache may or
may not be preloaded with certain query result lists as noted
above. The cache is inspected in step 1360 to determine
whether it already contains the result list for the current query.
If so, that cached query result list is loaded in step 1370 and
the results are delivered to the user in step 1380. As before, no
further processing is required because the results were previ-
ously ranked.

In the event that step 1360 reveals that the result list for the
current query had not previously been cached, then the result
list for the current query is computed in step 1362 (including,
as described above, the intersection of the lists of record IDs
for each prefix and ranking of the result list), while measuring
the overall time (e.g., t seconds) required to process this
query.

This overall time (t) is then compared in step 1364 to a
predetermined threshold (T seconds) to determine whether to
cache the result list for the current query before the results are
delivered to the userin step 1380. Ifthe query processing time
(t) exceeds the predetermined threshold (T), then the result

10

15

20

25

30

35

40

45

50

55

60

65

26

list is first stored in the cache in step 1366. In either case, the
results are then delivered to the user in step 1380.

As noted above, relatively short prefixes (such as the
single-letter prefixes) tend to correspond to relatively long
lists of record IDs that require a significant amount of pro-
cessing time to load into memory and intersect with other
lists. Moreover, exponentially smaller lists can be generated
by intersecting such lists with one another, in effect creating
“hybrid prefix lists” that correspond to multiple prefixes. In
this regard, the nomenclature “a™b” represents the hybrid list
resulting from the intersection of the “a” and “b” single-prefix
lists, which includes those records that contain both word(s)
beginning with “a” and word(s) beginning with “b.” As noted
above with respect to the WorldCat data set, the list of record
IDs corresponding to the single prefix “a” exceeded 60 mil-
lion, while the query “ab” (equivalent to the hybrid prefix list
“a”b”) yielded a result list of fewer than 4 million IDs.

In addition to preloading the cache at query time with
certain of these hybrid prefix lists (as well as single-prefix
lists), significant performance improvements in overall query
processing time can also be achieved by generating and
including certain of these hybrid prefix lists in the index, and
then identifying at query time relevant hybrid prefix lists from
the current query (which, by definition, were previously gen-
erated and are thus stored in the index) and retrieving them
from the index. As a result, the relevant hybrid lists need not
be regenerated at query time, thereby avoiding the processing
time otherwise required to retrieve and intersect multiple lists
(e.g., retrieving the “a” and “b” lists into memory, and then
intersecting them to create the “a™b” list, as opposed to simply
retrieving the “a”b” list from the index).

Because long-term disk storage space is available in rela-
tively larger capacities and is relatively less expensive than is
short-term memory (e.g., RAM), arelatively larger number of
combinations of these hybrid prefix lists can be precomputed
and stored in the index (as compared with those that can be
precomputed and stored in a memory cache). Cost-benefit
analyses can be made on a case-by-case basis with respect to
the particular data set being indexed in order to determine the
relevant set of “slow” prefixes—i.e., those prefixes that occur
frequently in the data set and thus correspond to relatively
long lists of record IDs that will require large amounts of
query processing time to retrieve, intersect with other lists and
rank.

Moreover, in one embodiment, a given amount of available
disk space is used to determine the number of average-sized
hybrid lists that can be added to the index. By generating and
sorting all single-prefix candidate lists at index time, and
selecting the longest N lists as “slow” candidates for hybrid-
ization, these N lists can be intersected with one another to
yield approximately N(N-1)/2 hybrid (“faster”) lists. In other
embodiments the square of N is used for simplification. In
other words, for a given amount of disk space, one can deter-
mine the number N of longest “slow” list candidates to select
for hybridization at index time. At query time, any such
“slow” prefix terms can be extracted from the query and
combined with any other “slow” prefix term to create a hybrid
prefix whose corresponding list has already been precom-
puted and stored in the index. These hybrid prefix lists can be
extracted from the index, along with the remaining single-
prefix lists present in the query, and then simultaneously
intersected to generate a result list that can be ranked for
delivery to the user.

For example, for a large library catalog data set containing
roughly 150 million records, the relevant set of “slow” pre-
fixes might include certain prefixes that are common to this
particular data set, such as “book” (as well as “boo” and “bo”

US 9,268,829 B2

27

and “b”), “19” and “1” (due to the common publication year
“19xx™), “fiction” (and its prefixes), “non” (and its prefixes,
“by” (and its prefixes, typically preceding the list of authors),
etc.

These particular “slow” prefixes can be combined, for
example, with the single-letter prefixes (which can also be
combined with one another) to generate hybrid prefix lists
that are exponentially smaller than their single-prefix coun-
terparts. It should also be noted that hybrid prefixes that share
a common prefix (e.g., “1™'” or “by~b”) need not be gener-
ated, as they would yield the same list as the longest single-
prefix component. As will be discussed in greater detail
below, however, certain of these “repeated” hybrid prefixes
can be redefined to be useful in the context of identifying
records containing multiple instances of a prefix.

To implement hybrid prefixes in one embodiment, hybrid
prefix candidates are selected (e.g., as noted above from the N
longest single-prefix lists, and perhaps also including all
single-character prefixes) and intersected with one another to
generate a set of hybrid prefix lists, which are then added to
the index along with the single-prefix lists, as illustrated in
FIG. 14A. The “7 character is used to distinguish single-
prefix from hybrid-prefix lists. At query time, as illustrated in
FIG. 14B, hybrid prefixes are generated from the current
query by identifying, extracting and combining “slow”
hybrid prefix candidates whose corresponding hybrid prefix
lists can be loaded into memory from the index, and then
intersected with the remaining single-prefix terms from the
query to generate a result list that is then ranked for delivery
to the user.

It should be noted that, in one embodiment, the ranking of
a prefix in a record is the index of the first word in the record
to which the prefix corresponds. For example, the prefix “h”
in the record “mary had a little lamb” would have a rank of 2
because it matches the second word in that record. In one
embodiment, the rank for hybrid prefixes is the same as the
rank for the first component prefix of the hybrid prefix. For
example, the hybrid prefix “a™1” would have a rank of 3 for
that same record (where “a” had a rank of 3 and “1” had a rank
of'4). In other embodiments, both ranking entries (3 and 4) are
maintained in the list. Ranking optimizations are discussed in
greater detail below.

Turning to the hybrid prefix list generation indexing
embodiment illustrated in FIG. 14A, it can be assumed that all
single-prefix lists of record IDs have already been generated
and sorted (as described above), at which point these lists are
ordered by length in step 1405, with the longest lists first (and
then shortest prefix first for equal-length lists). The length (L)
of'the Nth longest list is identified in step 1410 (e.g., as noted
above, where N is determined based upon the available disk
space for hybrid lists to be added to the index), and each list (i)
(looping at step 1415 from i=1 to N) is intersected (paired in
this embodiment) in step 1420 with each of the remaining
((1+1)th to Nth) lists having a length greater than L.

For example, if there are 100 hybrid candidate (single
prefix) lists, each having a length greater than 1000 records
(e.g., the smallest hybrid candidate, the 1007 list, might con-
tain 1003 records, while the largest hybrid candidate, the 1*
list, might contain 50,000 records), step 1420 would initially
involve the intersection of the 1** list with the 27 list, the 1%
list with the 37?list, . . . and the 1% list with the 1007 list. The
next time through the loop, it would involve the intersection
of the 27 list with the 37 list, the 27% list with the 47 list, . . .
and the 2”9 list with the 1007 1ist, and so on until the 997 list
is intersected with the 100” list.

25

40

45

50

55

28

In another embodiment, this process could continue (e.g.,
the first time through the loop) until none of the hybrid lists
involving the 1°list had a length exceeding L. For example, if
the hybrid list resulting from the intersection of the 1** list and
2" list had a length exceeding L, that list might be further
intersected (i.e., a hybrid triple) with the 3" list, and so on,
until its length no longer exceeded L.. One problem with this
alternative approach, however, is that the number of lists, and
thus the utilization of disk space, can become unwieldy.
Moreover, it is typically the case that the intersection of two
lists results in a significantly shorter list, thus making this
approach of relatively limited value in most cases.

Continuing, however, with the current embodiment, at step
1425, a determination is made as to whether more lists remain
to be processed (i.e., incrementing i and determining whether
it yet equals N) and, if so, repeating the loop at step 1415.
Once all hybrid lists have been generated (i.e., all combina-
tions of hybrid candidate lists with one another), then these
hybrid lists are added to the index in step 1430.

The list of the hybrid prefix candidates (i.e., the list of
“slow” prefixes whose corresponding single-prefix lists were
used to generate the hybrid prefix lists) is then added to the
index in step 1440 for use at query time. At this point, the
index includes not only single-prefix lists of record IDs, but
hybrid prefix lists as well, in addition to a list of “slow”
prefixes that were used to create such hybrid prefix lists. At
query time, as illustrated below with respect to FIG. 14B, the
list of “slow” prefixes is utilized to determine whether a query
prefix term is a “slow” prefix that should be combined with
another “slow” prefix from the query to create a hybrid prefix
whose corresponding hybrid prefix list can be loaded from the
index (rather than recomputed by loading multiple single-
prefix lists into memory and intersecting them).

Turning to the hybrid prefix query embodiment illustrated
in FIG. 14B, it can be assumed that the index includes single-
prefix lists of record IDs and the hybrid prefix lists generated
during indexing, as well as the list of “slow” prefixes used to
generated the hybrid prefix lists. The individual query terms
are extracted from the query in step 1460.

Instead of simply intersecting lists from the index corre-
sponding to the single-prefix terms of the query, the purpose
of this process illustrated in FIG. 14B is to identify pairs of
“slow” single-prefix terms in the query (i.e., those on the list
of “slow” prefixes that was used to create the hybrid prefix
lists in the index) and combine them to be replaced by hybrid
lists from the index, which can then be intersected (in parallel)
with one another and with any remaining (non-“slow”)
single-prefix lists to generate a result list that can be ranked
and delivered to the user as discussed above.

Before identifying these “slow” single-prefix terms, the
query is analyzed in step 1465 to determine whether the query
contains only one prefix term. If so, the search can be per-
formed in step 1490 by simply loading the list of record IDs
corresponding to that sole prefix term (i.e., the result list),
ranking that list and delivering the results to the user as
discussed above.

If, however, the query contains more than one prefix term,
each prefix term is compared against the list of “slow” pre-
fixes in the index in step 1470 to determine which of these
prefix terms is on that list, and is thus a “candidate” for
hybridization. At this point, each of these hybrid candidate
prefix terms is paired with another such candidate in step
1475. Each such pair will identify a hybrid list that can be
loaded from the index (effectively replacing the pair of
“slow” prefix terms) and intersected in parallel (together with

US 9,268,829 B2

29

the lists from the index corresponding to the remaining “non-
slow” single-prefix terms in the query) to generate a result list
as discussed above.

However, various additional optimizations of this pairing
ot hybrid candidates can be performed in step 1475—i.e., to
select the pairs that will ultimately yield the result list in the
shortest amount of time. All pairings will yield the same
results, but some may do so faster than others. For example,
all possible pairings could be considered, and those yielding
the shortest average hybrid lists could be chosen. Or perhaps
the pairings that generate the single shortest hybrid list could
be chosen, or the pairings that yield the shortest “longest
hybrid list.”

Regardless of how this pairing process is performed in step
1475, each such pairing will yield a hybrid list that can be
loaded from the index—Dby definition, because the lists cor-
responding to every combination of the “slow” prefixes were
intersected to generate a hybrid list stored in the index, as
discussed above with respect to FIG. 14A.

However, if step 1480 reveals that there are an odd number
of these hybrid candidate prefix terms, then one such candi-
date will remain after the others have been paired. If so, then
that remaining candidate is paired in step 1485 with any of the
other hybrid candidates (even though all of them have already
have been paired with another candidate). In one embodi-
ment, that remaining candidate is paired with whichever other
candidate yields the shortest list. Given the relatively small
number of prefix terms (much less “slow” prefix candidates)
in most queries, the performance penalty associated with
conducting multiple such comparisons is relatively small.

After having generated all hybrid prefix pairings (includ-
ing any odd candidate), the search can be performed in step
1490 by loading from the index the lists of record IDs corre-
sponding to these hybrid prefixes (and to the remaining single
prefix terms), intersecting these lists in parallel as discussed
above to generate the result list, ranking the result list and then
delivering the results to the user.

One wrinkle (alluded to above) involves the problem of
queries containing “repeated” prefixes. For example, the
query “m t m” (e.g., seeking records relating to “Mary Tyler
Moore™) must retrieve records that contain multiple (in this
case, 2 or more) words beginning with the “m” prefix. Yet, if
the list of record IDs generated for the single prefix “m” is
simply intersected with itself, it will retrieve the same list, i.e.,
a superset list of the desired list (because it may include
records that do not contain 2 words beginning with the “m”
prefix).

One optimization that addresses this problem is to generate
hybrid lists at index time to reflect all repeated instances of
each prefix within a given record. For example, in one
embodiment, the hybrid prefix “m™m” reflects the second
occurrence in a record of a word beginning with the “m”
prefix. This process is discussed in greater detail below with
respect to FIG. 15A. At query time, the query is parsed not
only (as discussed above) to replace “slow” single-prefix
query terms with hybrid prefixes, but also to replace repeated
single-prefix query terms with repeated hybrid prefixes (e.g.,
“m m”, “m m m”, etc) that are used to select hybrid lists to
be loaded from the index (if present) and intersected in par-
allel to generate a result list from which ranked results are
delivered to the user. This process of parsing the query to
generate these repeated hybrid prefixes is discussed in greater
detail below with respect to FIG. 15B.

Turning to the repeated hybrid prefix list generation index-
ing embodiment illustrated in FIG. 15A, the records are ini-
tially conditioned and deduplicated in step 1502, and option-
ally sorted in step 1504, as explained above with respect to

20

25

30

40

45

30

respective steps 502 and 504 of FIG. 5. They are also assigned
sequential IDs in step 1506, which can be used for ranking
purposes in the event the records are not sorted in step 1504.

Each record (r) is then processed in a loop beginning with
step 1510, for which a list (s) is initialized in step 1512 that
will contain a list of all single and hybrid prefixes found in the
words in that record. Each word (w) within the headers of the
current record (r) is then processed in an inner loop beginning
with step 1515. Each prefix (p) within the current word (w) is
then processed in yet another inner loop beginning with step
1520 (starting with the first character of that word).

Hybrid prefix (q) is initialized to prefix (p) in step 1522,
and is then used to accumulate a repeated hybrid prefix if
necessary. For example, if the letter “b” was a prefix found in
the first word (“big”) of a particular record, and was added to
list (s), and was then also found in a subsequent word (“ball”)
of' that record, the hybrid prefix (q) would be generated while
processing the first letter of that subsequent word (i.e., trans-
forming the value of (q) from “b” to “b™b”) once it was
recognized that the prefix “b” was already present in
list (s)—i.e., because it had been added while processing the
first word (“ball”) of that record. These steps are explained
below.

Hybrid prefix (q) is processed in step 1524 by searching to
determine whether it is present in list (s). If it is present (as “b”
was present in the example above), then hybrid prefix (q) is
transformed in step 1526 by appending to it the tilde character
(“7”) and the current prefix (p)—just as “b” was transformed
into “b™b” in the example above. Steps 1524 and 1526 are
then repeated with respect to this newly transformed hybrid
prefix (q) until it is no longer found in list (s).

In other words, continuing our example above, if a subse-
quent word of the record (“bounce”) was being processed, the
single prefix “b” and the hybrid prefix (“b™b”’) would already
be present in list (s)—i.e., because they were added while
processing the words “big” and “ball” respectively. As a result
of processing the word “bounce,” the hybrid prefix (q) would
be initialized to “b,” then transformed into “b™b” (upon find-
ing “b” in list (s)), and finally transformed into “b~b~b” (upon
finding “b™b” in list (s)) which would not yet be present in
list (s).

Eventually, however, this hybrid prefix (q) will not be
foundin list (s) at step 1524, and will be added to list (s) in step
1528. It should be noted that single prefixes will also be added
in step 1528—e.g., while processing the first occurrence of a
word in a record that begins with that single prefix (such as the
prefix “b” first encountered in the word “big” or the prefix
“ba” first encountered in the word “ball” in the example
above).

After adding the single or hybrid prefix to list (s) in step
1528, the next prefix, if any, of the current word (w) is pro-
cessed. Continuing with our example, while processing the
first character (prefix) “b” of the first word “big,” the initial
prefix “b” is added to list (s). Because additional characters of
that word have yet to be processed, the next prefix “bi” is
processed, later followed by the final prefix “big,” at which
point no more characters remain and the next word will be
processed.

This search for remaining characters (and thus prefixes) in
the current word occurs at step 1530. If a next character is
present, it is appended to prefix (p) in step 1532, and process-
ing returns to step 1522 where hybrid prefix (q) is set equal to
prefix (p) so that this next (longer) prefix can be processed as
discussed above. In other words, this longer prefix (or perhaps
ahybrid prefix generated therefrom) will be added to list (s) in
step 1528, and this processing of word (w) will continue until

US 9,268,829 B2

31

all of its characters have been processed, at which point the
next word (w), if any, of record (r) will be processed.

The search for remaining words in the current record (r)
occurs in step 1534. If a next word is present, then word (w)
is set to that next word in step 1536, and processing returns to
step 1520 where new word (w) is processed starting with the
first character (prefix) of that word (w), as described above. If
no more words are present in the headers of the current record
(1), then the processing of that record is almost complete.

The index is then updated in step 1538, by updating the list
of prefixes (including hybrid prefixes) for the entire set of
records covered by the index. In other words, if a prefix of
list (s) was not yet present in that list, it is added to the list. If
it was present, a new entry is generated, including the record
1D of current record (r) and a ranking offset—i.e., the position
within record (r) of the word corresponding to that prefix
entry (e.g., “4” if the first occurrence of a word beginning with
that prefix is the 4” word of that record). In addition, any
“slow” single prefixes can also be replaced with lists of cor-
responding hybrid prefixes as discussed above with respect to
FIG. 14A.

It should be noted that, for repeated hybrid prefixes, the
ranking offset will correspond to the nth occurrence of a word
beginning with that hybrid prefix. In other words, the prefix
“m” might have a rank of 4 if the 4” word of the record is the
first occurrence of a word beginning with “m,” while the
repeated hybrid prefix “m™m” might have a rank of 7 if the 7%
word of the record is the second occurrence of a word begin-
ning with “m” (and so forth for as many repeated instances of
a word beginning with “m” as are present in the record). In
another embodiment, the list corresponding to a hybrid prefix
(e.g., “m™m”) could contain multiple entries (repeating the
same record ID) associated with the multiple occurrences of
a word having that prefix within a given record.

After updating the index, and completing the processing of
the current record (r), the search for remaining records in the
data set occurs in step 1540. If remaining records exist, then
record (r) is set to the next record in step 1542, and processing
returns to step 1512 where list (s) is reinitialized for use with
new record (r), which is processed as described above.

Once all records in the current data set have been pro-
cessed, the index is sorted in step 1544 by prefix, and by
record ID within each prefix. The index is then split in step
1546 into separate lists of record IDs for each prefix. Finally,
each record ID list is compressed in step 1548 (using any of
various well-known compression techniques). A table of con-
tents (TOC) is then created as described above with respect to
FIG. 6.

At query time, queries are parsed, in one embodiment, not
only to replace “slow” single-prefix query terms with hybrid
prefixes (as discussed above), but also to replace repeated
single-prefix query terms with repeated hybrid prefixes (e.g.,
“m m”, “m m m”, etc) that are generated and used to search
the index, as shown in the repeated hybrid prefix query
embodiment illustrated in FIG. 15B.

The query is parsed into separate prefix terms which are
sorted alphabetically in step 1560. As will become clear, this
alphabetical sorting facilitates the determination of which
prefix terms are prefixes of other prefix terms, indicating the
existence of a “repeated” prefix in the query (i.e., the search
for records having multiple occurrences of words beginning
with the same repeated prefix). Each prefix term (1) is pro-
cessed in a loop starting at step 1562.

The prefix term (t) is checked in step 1564 to determine
whether it has been marked to be skipped—i.e., whether an
identical prefix term exists in the query, in which case such
repeated prefix terms were already used to construct a

25

30

40

45

55

32

repeated hybrid prefix term which reflects multiple occur-
rences within a record of words having that prefix.

Ifthe prefix term (t) was not marked to be skipped, then the
query (q) is set to that term (t) in step 1566. Then, that term (t)
is compared to each remaining prefix term in the query in a
loop beginning with step 1568. The prefix term (t) is com-
pared in step 1570 to the next remaining prefix term (1') to
determine whether term (1) is a prefix of term (t'). If so, then a
repeated prefix exists in the query, and a tilde (7) followed by
the prefix term (t) is appended to the query (q) in step 1572.
Moreover, If that next prefix term (t') is found to be identical,
in step 1574, to the prefix (t) being processed, then the prefix
(t) is marked to be skipped in step 1576 (i.e., when that next
prefix term (t') is processed and compared to all subsequent
prefix terms in the query).

Otherwise, if the prefix term (t) is not identical to the next
prefix term ('), or is not a prefix of that term, then the pro-
cessing of prefix term (t) continues in step 1578 by determin-
ing whether there exists another subsequent prefix term (t'). If
so, then t' is set to that next prefix term in step 1580, and
processing resumes at step 1570 to determine whether prefix
term (t) (still being processed) is a prefix of that next remain-
ing prefix term t'.

Eventually, after prefix term (t) has been compared to all
remaining subsequent prefix terms (1), then no remaining
prefix terms will be found in the query in step 1578. At that
point, the query (q) is emitted in step 1582, effectively saving
either that single prefix term (1), or a repeated hybrid prefix
term (1') to be used in its place, to load a corresponding list
from the index once all prefix terms of the query have been
processed.

Having processed prefix term (t) by comparing it to all
subsequent prefix terms (t') in the query, the query is further
analyzed in step 1584 to determine whether any subsequent
terms exist in the query. If so, then the next prefix term (1) is
prepared for processing in step 1586, and processing returns
to step 1564 to determine whether prefix term (t) has been
marked to be skipped (i.e., whether an identical prefix term (t)
has already been processed and replaced with a repeated
hybrid prefix term). This new prefix term (t) will be compared
with all subsequent prefix terms in the query as discussed
above until no unprocessed prefix terms remain in the query.

At that point, each single or repeated hybrid prefix term
emitted in step 1582 is used in step 1588 to load its corre-
sponding list of record IDs from the index, which are (as
discussed above) intersected in parallel in step 1590 to gen-
erate a result set of record IDs that is ranked and delivered to
the user.

It should be noted that skipped prefix terms (i.e., those
replaced by repeated hybrid prefix terms) may also be used at
this point to load corresponding lists from the index.
Although these lists will not alter which record IDs are
present in the result list, they could impact the subsequent
ranking of those records in the result list. Alternatively, as
noted above, the list in the index corresponding to a hybrid
prefix (e.g., “m™m”) could contain multiple entries (repeating
the same record ID) associated with the multiple occurrences
of' a word having that prefix within a given record. In any
event, sufficient information is available in the index to enable
the records in the result list to be ranked in accordance with a
desired ranking scheme.

Another set of optimizations relates to the issue of ranking
or ordering the records in the result set before delivering the
results to the user. These optimizations involve both index-
time and query-time modifications to the processes discussed
above. Table 0 below highlights some of these ranking con-

US 9,268,829 B2

33

cerns, by illustrating a result set of 5 records as delivered to
the user after implementing certain ranking optimizations
discussed below.

For example, without these optimizations, a query of
“twain” might have resulted in a ranking of these 5 resulting
records as 2,2, 7, 10 and 2, based on the position of the word
(prefix) “twain” within each record, and thus would have
resulted in a different ordering than is illustrated in Table 0. In
fact, books about Mark Twain would generally be ranked
ahead of books by Mark Twain, which may not be the desired
result.

One optimization involves a prioritized set of factors used
for ordering the records in a result set. For example, if the top
20 results will be displayed to the user, then the first factor
would be applied to generate the top 20 results from the result
list. Any of those results which are equal with respect to this
first factor would be further ordered based on the second
factor, and so on, until all 20 results are distinguished from
one another (or, if still equal, simply left in the order in which
they were extracted from the index, or ordered alphabetically,
etc).

In one embodiment, there exist 4 such factors which, in
prioritized order, include: (1) Number of Adjacent Pairs of
Query Prefix Terms (i.e., the number of adjacent query prefix
terms that are prefixes of adjacent words in each record of the
result set; (2) GPS or related “geographic proximity” of a
record (e.g., from a data set of restaurants) to a known geo-
graphic location (e.g., a specified geographic location, such
as an address or a zip code, the present location of a mobile
device, etc); (3) Positional Ranking of a record based on the
position of the words matching the prefix query terms relative
to the beginning of the record and/or the beginning of one or
more fields of the record; and (4) Popularity of a record based
on external information (e.g., the popularity of songs in a data
set, book sales or availability in multiple libraries, articles that
are most frequently updated over time, etc). In other embodi-
ments, these (and other) factors can be weighted and a func-
tion of these weighted factors can be computed and used as a
single ranking criterion.

These factors will be discussed in reverse priority order,
beginning with Popularity, which, in one embodiment, only
comes into play in the ranking process with respect to records
that score equally with respect to the other 3 higher priority
factors. For example, in a data set of song titles, various
publicly available measures of each song’s popularity can be
stored in the index and extracted to distinguish and rank those
records of the result set which are otherwise equally ranked
after consideration of the other higher priority factors. Simi-
larly, articles from the English Wikipedia data set could be
distinguished based upon the frequency of their revision over
time (i.e., an indirect measure of public popularity). A nation-
wide or worldwide library catalog data set could utilize the
number of libraries (or other locations) at which each title is
available as a rough measure of each title’s popularity.
English-language titles could be given preference (at least for
queries originating in English-speaking countries), or the title
having the most recent year of publication could be deemed
the most “popular” title. It should be noted that the measure of
popularity employed will typically be targeted to the particu-
lar data set being indexed.

Turning to the Positional Ranking factor, this factor, in one
embodiment, involves simply determining the lowest offset
into the record of any word having as a prefix one of the prefix
search terms. For example, looking at the first record in Table
0, that record could have resulted from a “firm twain” query.
The record would have a rank of 2 (second word in the record)
with respect to the prefix term “twain” and a rank of 6 with

25

30

40

45

55

60

34

respect to the prefix term “finn.” In one embodiment, the rank
could simply be computed as the lowest of such rankings (i.e.,
2). It should also be noted that, in this embodiment, the initial
occurrence of the word in the record was used to determine
the rank stored in the index.

One problem with this methodology, however, is the fact
that data sets, such as those illustrated in Table 0, often con-
tain “structured data” that is regularly divided into “fields” of
data, such as titles, authors, genre, publisher name, year of
publication, etc. As noted above, storing a word’s offset into
a record, as opposed to its offset into a particular field of that
record, may yield unintended results. One solution to this
problem is to delimit the fields of a record and assign periodic
ranking values (e.g., 10, 20, 30, etc) to the delimiters (using
relative position to determine intra-field ranking, and essen-
tially “padding” the fields to avoid accidental adjacency
across fields). Alternatively, individual fields could be ranked
relative to one another by assigning the delimiter ranking
values accordingly or utilizing different types of delimiters
(e.g., to equate multiple author fields to one another, but rank
them higher than a “publication year” field).

In short, by taking into account intra-field position and
relative inter-field importance, this Positional Ranking factor
will better reflect the intentions of the user initiating the
query. Accidental adjacency across fields can be avoided.
Moreover, the relevant importance of fields can be distin-
guished based upon the particular data set being searched.
Yet, as will be discussed below, other factors beyond Posi-
tional Ranking are, in some embodiments, of even greater
importance.

The GPS (or geographic proximity) field is particularly
useful with respect to certain types of data sets. [t may have no
meaning, however, with respect to other data sets, such as a
library catalog database of books, as illustrated in Table O.
Yet, for a domain of restaurants, users may be particularly
interested in those restaurants that are closest to a pre-speci-
fied geographic location (e.g., a particular zip code or
address), or to the user’s current location—e.g., as indicated
via a GPS device on the user’s mobile phone. In one embodi-
ment, a separate table is maintained with entries for each
record containing corresponding GPS (latitude/longitude)
information. While processing a given record of the result list,
the relevant corresponding entry is retrieved from this table,
the distance to the reference location is calculated and added
to the record’s entry in the result list, and a heap is employed
(as discussed above) to process the result list moving the
“best” record (e.g., the one closest to the reference point) to
the top of the heap. The best N elements are then extracted
from the top of the heap and delivered to the user.

Finally, the “Number of Adjacent Pairs of Query Prefix
Terms” is considered. This factor is (in one embodiment)
prioritized above the others because most queries include
relatively few (typically one or two) prefix terms. As more
terms are added to a query, adjacent query prefix terms tend to
yield results with adjacent words having those prefixes (e.g.,
first and last names, common phrases, etc). Yet, other records
may inadvertently be included simply because they contain
words having all of the query prefix terms, and even at early
positions within the record or a field of the record. This factor
will distinguish such inadvertently included records with a
level of effectiveness that improves dramatically as the num-
ber of query prefix terms increases.

Turning to Table 0, it is evident that a query “twain” would
rank these 5 records relatively high, as they all include “Mark
Twain” in either the title or author fields. Additional query
terms (e.g., “Mark Twain Huck Finn™) would further distin-
guish certain records in the result set, moving those whose

US 9,268,829 B2

35

titles included “Mark Twain” and/or “Huckleberry Finn” or
whose authors included “Mark Twain” to higher ranked posi-
tions, while moving other records to lower ranked positions
(such as books about “Huckleberry Finn” by authors coinci-
dentally having the first name “Mark,” or other such inadvert-
ent matches of the query term prefixes).

In one embodiment, the scoring based on this factor is
simply the number of adjacent prefix query terms yielding
adjacent corresponding words. For example, for the query
“Mark Twain Huck Finn,” the scoring would either be 0, 1, 2
or 3, with a point contributed for each adjacent pair of terms—
“Mark Twain,” “Twain Huck,” and “Huck Finn”. This factor
alone accounts for much of the ranking process in this
embodiment.

However, to the extent records scored equally with respect
to this factor, the next factor (GPS) would then be considered,
if relevant to the data set being searched. When relevant, this
factor is also of particular importance (e.g., when searching
for the closest “Starbucks” locations while traveling, and
relying on the user’s mobile phone GPS unit). It is unlikely
that the next two factors will even be considered when the
GPS factor is relevant.

When the GPS factor is not relevant, the Positional Rank-
ing factor will likely move records such as the 5 records
shown in Table O toward the top of the list. Yet, the 5 records
shown in Table O score equally with respect to this factor (i.e.,
all scoring 2 due to the position of “Twain” in either the title
or author fields of each record). This is where the final factor
of “Popularity” comes into play.

As noted above, this could reflect any notion of popularity
relevant to the particular data set involved. In one embodi-
ment, that includes the availability of the referenced book
(e.g., in the most number of libraries). In another embodi-
ment, it could include the most recent publication year. In any
event, at this point, if the user is not satisfied with the results,
an additional query search term is very likely to yield a more
desirable ranking.

TABLE 0

Mark Twain’s Adventures of Huckleberry Finn: a documentary volume

by Tom Quirk

Detroit: Gale Cengage Learning, c2009.
Book: Bibliography; English

Mark Twain on the move: a travel reader

by Mark Twain; Alan. Gribben; Jeffrey Alan Melton

Tuscaloosa: University of Alabama Press, c2009.
Book: Bibliography;
English

Life on the Mississippi

by Mark Twain; Justin. Kaplan

New York, N.Y.: Signet Classics, 2009.
Book: Bibliography; English

A Connecticut Yankee in King Arthur’s court

by Mark Twain

Waterville, Me.: Kennebec Large Print, 2009.
Book: Fiction; English

Mark Twain and the river

by Sterling North
New York: Puffin Books, 2009.
Book: Biography; English

Another ranking optimization involves moving the ranking
process inside the “inner loop” (where multiple lists are
retrieved into memory and intersected in parallel), as opposed
to ranking the records in the result list after it has been gen-
erated by intersecting the multiple lists. In one embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

36

while generating (in the “inner loop™) the record IDs that are
present in all of the lists being intersected, the ranking calcu-
lation (regardless of which factor or combination of factors is
being calculated) is performed.

In this embodiment, the heap priority is reversed, with the
“worst” record being placed on the top of the heap. Moreover,
the size of the heap is limited to the number of results desired
by the user (e.g., 20 records if the 20 “best” resulting records
will be displayed). This is in contrast to the heap process that
derives the 20 best results from the (already generated) results
list, which would employ a heap the size of the (typically
much larger) entire results list.

As each new result is generated, it is compared to the record
at the top of the heap, which contains the currently lowest-
ranked result in the heap. If the new result ranks even lower,
then it is discarded. Otherwise, it replaces the result at the top
of'the heap, and the heap is rebalanced.

Thus, the heap will remain at a small constant size (e.g., 20
records), minimizing the performance impact of rebalancing
the heap, and many results will be discarded after a single
comparison (with the record at the top of the heap). Moreover,
a significant number of memory/disk accesses will be elimi-
nated. A smaller heap, for example, has a better chance of
being stored completely in a processor’s L1 cache, thereby
significantly reducing overall processing time.

II1. Dynamic Menus

As noted above, a consistent search mechanism, particu-
larly one that employs variations of the interactive, multi-
prefix and multi-tier techniques described above, facilitates
targeted searches in a mobile communications environment
by reducing the requirements for user interaction and data
entry, which in turn reduces the use of local processing and
network bandwidth resources. As also noted above, results of
these targeted searches are often organized into lists of
“records” that share common attributes or “fields” (from train
schedules and movie times to famous people, places and
events, to restaurant addresses and phone numbers, and vari-
ous other diverse types of relatively structured information).

As aresult, these data fields, such as phone numbers, often
can be “recognized” and extracted to enable actions specific
to a particular record, such as calling a selected restaurant
(even if the phone number data associated with that restaurant
was also maintained as unstructured text with respect to the
user’s query). Other actions may become relevant as a result
of the context of a user’s query or other state information
(such as the time of day, or the user’s location, as detected by
GPS equipment on the user’s mobile phone).

Whether these additional actions are specific to one or
more particular records or to all records within one or more
particular channels, or are available generally among all
channels (or combinations of the above), they can provide
users with alternatives to simply selecting and activating a
particular record. In one embodiment, dynamic menus are
employed to enable a wide variety of alternative actions that
are not only appropriate to particular channels or records, but
are also well-suited to the limitations of a mobile communi-
cations environment, in that they can be invoked with rela-
tively minimal user interaction and use of limited resources.

For example, having located a restaurant via a multi-prefix
search within a “favorite” local restaurant channel, a user
could place a call to that restaurant via a single menu selection
or push of a phone’s talk button. Another menu selection
might display a map of that restaurant, or directions from the
user’s current location (utilizing GPS data). A related search
for an after-dinner movie (within a movie channel) might
include a different set of menu selections, such as “movie
reviews” or “starring actors.” The result is a consistent tar-

US 9,268,829 B2

37

geted search mechanism across different information
domains (channels) that provides users with alternative sets
of actions appropriate to the information found as a result of
one or more user queries. Users can locate this information
and invoke these ancillary actions with relatively few key-
strokes, menu selections and button presses, which in turn
reduces the use of local processing and memory resources, as
well as network latency and bandwidth.

A. Dynamic Menu Architectural Overview

In one embodiment, the client portion of this (client-server)
dynamic menu mechanism is implemented as a standalone
application on a resource-constrained mobile communica-
tions device, such as client 118, illustrated in FIG. 1A (com-
ponents of which are further detailed as device 200 in FIG. 2).
The architecture of this dynamic menu mechanism is based
on an extensible thin-client model which, as will be explained
in greater detail below, permits the bulk of the resource-
intensive functionality to be implemented and performed on
search server 128 (also illustrated in FIG. 1A), rather than on
resource-constrained client 118.

Such reliance on server 128 is also advantageous because
mobile communications devices vary widely in their ability to
support more complex functionality, such as the use of Java-
script and Ajax to create interactive web-based applications.
Moreover, additional functionality can be implemented on
server 128 without modifying any of the client applications
124 on client 118, thereby providing users over time not only
with the promise of new channels, for example, but also with
added functionality associated with one or more existing
channels.

To facilitate this level of extensibility, the client (imple-
mented, for example, as one of the client applications 124 on
client 118, and sometimes referred to herein interchangeably
with client 118) provides relatively general-purpose function-
ality. In other embodiments, such functionality could be inte-
grated into browser 120, or into another application such as a
search engine, or into a special-purpose application dedicated
to one or more information channels. Server 128, however,
remains in control, relying upon client 118 to interpret the
specific instances of the “dynamic menu structure” provided
to client 118 by server 128 in response, for example, to user
queries.

In one embodiment, this general-purpose functionality
implemented by a client application on client 118 includes (i)
sending HTTP requests to search server 128 (such requests
containing, for example, keystrokes of a user’s multi-prefix
query or a URI resulting from a user’s selection of a channel,
a record or a dynamic menu item), (ii) receiving HTTP
responses from server 128 (containing, for example, HT'TP
headers along with search results and related data), (iii) pars-
ing these HTTP responses (for example, to extract and render
this data on the screen of client 118, as well as to extract
dynamic menu information from the HTTP headers), and (iv)
interacting with the user of client 118 to facilitate subsequent
user queries and selections of search results or dynamic menu
items, which can be utilized to generate and send additional
HTTP requests (in some cases via browser 120), as well as to
invoke “built-in” functionality on client 118, such as placing
aphone call or sending an email in response to a user request.

Much of the basic search-related functionality imple-
mented on both client 118 and server 128 has been explained
above in great detail. The integrated dynamic menu mecha-
nism described below, however, significantly extends such
functionality by providing users with alternatives to simply
selecting and activating a particular record.

For example, as explained above, search server 128 gener-
ates results at various tiers of a multi-tier user query, and

10

15

20

25

30

35

40

45

50

55

60

65

38

sends those results to client 118. Such results include a col-
lection of records 142 with associated fields 144 (illustrated
in FIG. 1B), typically associated with a particular channel
being queried by a user of client 118. A given record 142
typically includes one or more fields 144 that are displayed to
the user on the screen of client 118, and which identify the
record (such as the name of a channel or category of channels,
or an item within a channel, perhaps including a name,
address and phone number), as well as a field containing a
URI (for example, a link) representing the action to be per-
formed when the user selects and activates that record.

For example, when a user activates record 906 in FIG. 9B
(representing the “Starbucks Store Locator” channel), client
118 accesses the URI associated with that record (which it
previously received from server 128 in response to its single
prefix “St” query for a desired channel) and uses it to generate
an HTTP request to server 128. In response, server 128 sends
to client 118 a landing page 931 associated with that channel
for display on client 118, as illustrated in FIG. 9C. Similarly,
after the user activates the “Los Altos Rancho” record 935
illustrated in FIG. 9F, client 118 accesses the URI associated
with that record (which it had received from server 128 in
response to its multi-prefix “Ran I a” query for a particular
Starbucks store) and uses it to generate an HT'TP request to
server 128. In response, server 128 sends to client 118 a web
page 941 (with additional detail corresponding to selected
“Los Altos Rancho” record 935) for display on client 118, as
illustrated in FIG. 9G. Note that web page 941 could, in one
embodiment, be retrieved and displayed via browser 120
without the assistance of server 128 while, in other embodi-
ments, it could be retrieved by server 128 and displayed on
client 118 without the assistance of browser 120.

In one embodiment, Server 128 extends this functionality
(to provide users with alternatives to simply selecting and
activating a particular record) by generating additional fields
associated with the records of a particular channel (or with
multiple channels or channel categories). For example, with
respect to the Starbucks Store Locator channel 906, server
128 might generate an additional field containing the phone
number of each Starbucks store record. Server 128 would
send such additional fields to client 118 (for example, in
response to user queries) along with the other fields noted
above that identify each record and provide a URI represent-
ing the action to be taken when the user selects and activates
that record. As noted above, while the phone number dis-
played in record 935 could, in one embodiment, be unstruc-
tured text for the purposes of a user’s multi-prefix query,
server 128 could generate (and reformat, if necessary) a sepa-
rate phone number field for each record containing the phone
number (if available) of that particular Starbucks store.

Moreover, in one embodiment, server 128 generates one or
more HTTP headers representing alternative actions a user
could invoke, for example, with respect to a particular
selected record. Such actions can utilize not only the addi-
tional fields generated by server 128, but also any other data
or state information discernible by client 118 (such as elapsed
time or user location via GPS services).

One such HTTP header might contain a dynamic menu
item that enables a user to call the phone number of a selected
record. For example, if a user selects “Los Altos Rancho”
record 935 and activates the dynamic menu mechanism
(rather than the action associated with the record itself), client
118 could display a dynamic menu containing a “Call Store”
item and, if the user selects that item, client 118 could then
dial the phone number of the Los Altos Rancho Starbucks

US 9,268,829 B2

39

store (contained in the additional phone number field previ-
ously sent to client 118 by server 128 in response to the user’s
multi-prefix “Ran [a” query).

Asnoted above, users can select a record without activating
it in various ways, depending upon the capabilities of the
user’s particular mobile communications device. For
example, some devices have buttons that are dedicated (or can
be assigned) to prompt a client application to invoke a menu.
Others, such as touchscreen devices, often do not distinguish
between the selection and activation of an object, in which
case anicon or other visible identifier could be displayed next
to each record, or client 118 could distinguish the number of
times a record was “tapped,” or how long it had been “held
down.”

In one embodiment, an HTTP header includes not only the
name of the dynamic menu item that is displayed to the user
(for example, “Call Store™), but also the actions to be per-
formed when the user activates that dynamic menu item
(whether directly or indirectly, for example, by pressing a
phone button while a particular record is selected). Such
actions are designed to be extremely dynamic, taking into
account not only the context of a user’s queries but also the
state of the user’s mobile communications device, which can
change frequently.

The HTTP header architecture allows dynamic menu items
to be applicable globally to all channels, as well as to one or
more particular channels, and even to particular records
within or across channels. In one embodiment, a dynamic
menu item can be specified to appear only if data pertaining to
that item is available for a particular selected record. For
example, a “Call Store” menu item might not appear if a
phone number was not available for the particular store record
selected by the user. These HTTP headers can leverage vir-
tually any state information known to the user’s mobile com-
munications device (including information obtained via a
remote server), such as a user’s GPS location or whether a
user is logged into a particular channel or web site.

10

15

20

25

30

35

40

In one embodiment, HTTP headers can reference data
fields which not only can vary from one record to the next
(such as phone numbers), but which can themselves contain
record-specific dynamic menu item names and actions. In
other words, distinct data fields can be defined (and populated
on a per-record basis) such that the name of the dynamic
menu item itself (and its associated action) will vary from
record to record, even within a selected channel (due to the
ability of the HTTP header to reference these distinct data
fields).

This extensible “dynamic dynamic menu” feature enables
the generation of record-specific, as well as channel-specific,
menu items. For example, a movie channel might contain
various types of field data, such as movie titles and actor
names. Moreover, the “many-to-many” relationships among
such data might well be maintained in a relational database
that can be queried, for example, for a list of movie titles in
which a given actor has appeared, or for a list of actors that
have appeared in a given movie. A dynamic menu could, in
one embodiment, display different menu items for search
result “actor” records (for example, “Show Bio” or “Show
Filmography”) than for search result “movie” records (for
example, “Show Actors” or “Show Reviews”), even ifa user’s
multi-prefix query was applied to actors as well as movies
(provided the type of search result could be ascertained by
server 128).

The architecture of these HTTP headers, including their
use of state information as well as additional fields added by
server 128, is discussed in greater detail below.

B. Dynamic Menu HTTP Header Architecture

One embodiment of this dynamic menu HTTP header
architecture is illustrated in Table 1 below, which includes six
distinct fields of a dynamic menu HTTP header. The utility of
this dynamic menu HTTP header architecture will become
apparent from the following explanation of these fields with
reference to the “SAMPLE Dynamic Menu HTTP Headers”
listed in Table 2 below.

TABLE 1

HTTP HEADER
FIELD

VALUES

COMMENTS

Header Name

Context C

—

—

Processing Type

e

Next Step

2]

Menu Item Name

B-Menu-Entry-nnn

Current Channel
Current Selected Item
B BOTH

Processed IN Client
O Processed OUT of Client
(eg, Launch Browser)

Follow Link

R Refresh Channel
Refresh Channel and
Clear Search Filter
N Do Nothing

[TEXT of Menu Item name]

Number “nnn” determines Order of Menu Item
within Dynamic Menu

Indicates whether Menu Item can apply to Current
Channel, Selected Item or BOTH

Menu Item will NOT be visible/enabled if

Focus on Channel when “I” set or

Focus on Selected Item when “C” set

Upon Menu Item activation, Client issues HTTP or
other Request (via URI constructed in accordance
with “Action” fleld) either:

To Server (to retrieve data for display IN Client, and
including built-in client application and mobile
device functionality)

OR

To Browser or Other Client App (launched to
retrieve data OUTSIDE of Client, eg, via URI passed
from Client)

After processing the Action (specified below), Client
might “Do Nothing” (N) or perform an additional
action, such as:

“Follow Link” (F) as if user had activated Selected
Item (row or record)

OR

“Refresh Channel” ® to provide updated/refreshed
data (or “S” to also clear any existing search filter)
This is the text that will be displayed in the Dynamic
Menu

Menu Items displayed in the order specified in the
“Header Name” field

US 9,268,829 B2

41
TABLE 1-continued

42

HTTP HEADER

FIELD VALUES COMMENTS

Action %% [Used to construct URI]

See explanation below regarding the process for

constructing a URI to be processed in accordance
with the “Processing Type” field

TABLE 2

SAMPLE
Dynamic Menu HTTP Headers

B-Menu-Entry-1: BIN; Add to favorites;
http:/live.boopsie.com/service/set/avorite=$ 1 &base=$0&uri=$2\r'\n
B-Menu-Entry-3; IIF; Click to call;

tel:$4/; Talk\r\n

B-Menu-Entry-2: IIS; Search from here;
http://live.boopsie.com/service/set/name=3$1&latlon=$33&response=textir\n
B-Menu-Entry-4: CIN; Change location;

i:change%?20location\r\n

B-Menu-Entry-6: ION; Directions to here;
http://live.boopsie.comyservice/directions/?latlon=$3\r\n
B-Menu-Entry-5: BIS; Clear location;
http:/live.boopsie.com/service/set/?]atlon=\r\n

B-Menu-Entry-7: ION; Movie details;

http://wap.aol.com/moviefone/Movie.do?theaterid=$ 6&movieid=$7 &showtime=$8&showsynopsis=true\r'n

Eachrow ofthe SAMPLE Dynamic Menu HTTP Headers”
shown in Table 2 represents a distinct dynamic menu HTTP
header, delimited from other headers (in one embodiment) by
“carriage return\newline” or “\r\n” characters. Each header in
turn represents a dynamic menu item (such as “Add to favor-
ites”) that might appear when the dynamic menu is invoked
and displayed on a user’s mobile communications device.

As noted above, in one embodiment, users can also invoke
such dynamic menu items via built-in functionality on a
mobile device, such as pressing a “Talk” button that is
mapped to invoke a “Click to call” dynamic menu item. In this
embodiment, the mapping occurs by adding a symbolic name
to the header after the Action field (for example, “Talk” in row
2 of Table 2 to invoke this dynamic menu item whenever the
client application detects that the user presses the built-in
“Talk” button on client 118).

In another embodiment, these symbolic names can also be
used to modify the functionality of a dynamic menu item. For
example, a “Map” symbolic name could direct the client
application to pass a URI to a third-party mapping application
(such as Google Maps), if one is installed on client 118, rather
than to a web browser, such as browser 120. In yet another
embodiment, a web browser might automatically detect cer-
tain location-related information in a URL obtained from the
client application and elect to utilize a third-party application
that it knows has been installed on client 118 (such as Google
Maps), by reformatting the URL (intended for a web server)
in accordance with a published API defined by such third-
party application.

As noted above, in one embodiment, whenever server 128
(see FIG. 1A) sends data to client 118, it also sends a set of
HTTP headers which can include dynamic menu HTTP head-
ers representing dynamic menu items. Thus, a different set of
dynamic menu items may be “active” depending upon which
HTTP headers were most recently sent. In one embodiment,
a set of “global” dynamic menu items is always active, along
with any additional dynamic menu items sent by server 128 at
any given time. In another embodiment, a set of “default”
dynamic menu items might become active once a channel has
been chosen, unless the server overrides some or all of those

30

35

40

45

50

55

60

65

default dynamic menu items. Many other combinations are
apparent and will depend upon the requirements of any par-
ticular implementation.

The first field of each header, illustrated in Table 1, is the
“Header Name” field. This field identifies the header as a
“dynamic menu” HTTP header by virtue of the “B-Menu-
Entry-nnn” designation, where “nnn” serves to determine the
order in which the “Menu Item Name” (discussed below) will
appear when the dynamic menu is displayed. Referring to the
headers in Table 2, it can be seen that their display order is
determined by the number following the “B-Menu-Entry-"
designation, as opposed to the order in which they were
transmitted to the client (reflected as the order of the rows in
Table 2). For example, the header in row 2 of Table 2 would
appear as the third menu item in the dynamic menu actually
displayed to the user. Finally, note that this ‘Header Name”
field is delimited, in one embodiment, from the next field
(“Context”) by a colon (“:) character.

The “Context” field in Table 1 is a single-character field
that relates to the context or circumstances in which the
header’s dynamic menu item will be displayed. In other
words, even when the dynamic menu is displayed on a user’s
device, not every dynamic menu item will necessarily be
displayed. In one embodiment, the dynamic menu item might
be displayed only when the “focus” is on the current channel
(C), or only when the focus is on a particular selected record
or item (I) displayed in response to a query within that chan-
nel. Otherwise, it might always be displayed (for example, in
both (B) cases) whenever the dynamic menu is displayed
(assuming, in one embodiment, that referenced data fields are
non-empty).

In one embodiment, the “focus” will typically be on the
“channel” (or channel category) when results are received
from server 128 (for example, in response to a user query or
menu selection). But, when a user selects (but does not acti-
vate) a particular item or record within a channel, the focus is
then switched to that particular item or record.

The header in row 3 of Table 2, for example, containing a
“Search from here” dynamic menu item, would, in this
example, not be displayed unless the focus was on a particular

US 9,268,829 B2

43

selected record or item (I). In the case of a “Yellow Pages”
channel, for example, it would not make sense (contextually)
to display a “Search from here” dynamic menu item before
the user enters a search query (in which case no records would
be visible) or after the user enters a partial or complete query
but before the user selects a record (in which case multiple
items might be visible). But, once the user selects a particular
record, it makes sense in this context to display the “Search
from here” menu item, which, if activated, would replace the
“reference location” for future searches with the location
associated with that selected store. As noted above, however,
in the event that the particular selected store did not have a
listed address, then the client application could detect that the
“address” field was empty and (using a different mechanism
discussed below) prevent the display of the “Search from
here” menu item for that particular selected record.

In the case of the “Add to favorites” header in row 1 of
Table 2, the “B” designation indicates that this function could
apply to the current channel as well as to the selected item.
Continuing with the above Yellow Pages example, if the focus
is still on the channel (for example, before the user enters a
query and selects a record), then activation of the “Add to
favorite” dynamic menu item would add the Yellow Pages
channel to the user’s list of “favorites.” But, if the user selects
a particular store, and then activates the “Add to favorite”
dynamic menu item, then the selected store (not the Yellow
Pages channel) would be added to the user’s list of “favor-
ites.”

Yet, the “Change location” header in row 4 of Table 2
would only be displayed if the focus was on the channel, as
opposed to a particular record (due to the “C” designation in
the Context field). Continuing with the Yellow Pages
example, consider the scenario in which a user first activates
that channel, and has not yet entered a query. If the user had
previously seta “search center” location, then the client appli-
cation might initially display a list of stores nearest that loca-
tion. But, if the user desires to search for stores in another
geographical area, then the user most likely would not select
one of those displayed store records. Instead, the user could
activate the “Change location” dynamic menu item, which
might display a list of zip codes and prompt the user to enter
zip code digits until the user sees and activates a desired zip
code. The user might then enter a query into the Yellow Pages
channel, resulting in the display of a list of stores nearby the
user’s new “‘search center” location.

Note that, in the SAMPLE Dynamic Menu HT'TP Headers
in Table 2, the “Context™ field (in one embodiment) has no
delimiter, as it is a single-character field followed by another
single-character field, the “Processing Type” field, which also
has no delimiter, as it is followed by a third single-character
field, the “Next Step” field, which has a semicolon (*;”)
delimiter to separate it from the following “Menu Item
Name” field.

Returning to Table 1, the “Processing Type” field indicates
whether, upon activation of the dynamic menu item by the
user, the associated action will be performed inside (I) this
client application (including invocation of a built-in feature of
the user’s mobile device, such as placing a phone call) or
outside (O) this client application (for example, by launching
another client application, such as a web browser or mapping
application). In either case, as will be discussed below with
respect to the “Action” field shown in Table 1, activation of
the dynamic menu item will result in generation of a URI,
which will either be transmitted to server 128 (or handled
internally, for example, via built-in functionality) or be
passed to another client application, such as web browser 120.

10

15

20

25

30

35

40

45

50

55

60

65

44

Returning to Table 2, it is apparent that many of the actions
associated with these headers are performed inside (I) the
client application. For example, in addition to the “Add to
favorites,” “Change location” and “Search from here” head-
ers, the “Clear location” header in row 6 of Table 2 will also
direct the client application to transmit an HTTP request
(containing the relevant URI) to server 128 (or, in other
embodiments, to third-party servers hosting particular chan-
nel functionality). Instead of setting the user’s “latlon” vari-
ableto aselected “zip code” value (containing the latitude and
longitude coordinates corresponding, for example, to a
desired zip code), the client application would request that
server 128 clear that variable by setting it to a null value. Even
the “Click to call” header in row 2 of Table 2 will utilize the
client application to invoke built-in functionality of the user’s
mobile device (in this case, to place a call to a selected item,
such as a store or movie theater).

Other headers in Table 2, however, include actions that are
intended to be performed outside (O) the client application,
for example by invoking another client application, such as a
web browser. For example, the “Movie details” header in row
7 of Table 2 directs the client application to construct a URI
utilizing various field data (discussed below) and then pass it
to a client web browser to retrieve a web page from a third-
party web server. Moreover, the “Directions to here” header
in row 5 of Table 2 will appear only if the user selects a
particular item, which typically will include one or more
location fields. In one embodiment, the client application will
pass the relevant location information (for the starting “search
center” as well as the destination of the selected item) to
another client application, such as a web browser, which will
retrieve a web page containing relevant directions (and per-
haps a map of the route). In another embodiment, a dedicated
mapping application could be employed instead of a web
browser.

The “Next Step” field in Table 1 is also a single-character
field that indicates whether the client application, after it
performs the action associated with this dynamic menu
header, will perform another action. For example, a “Follow
Link” (F) action would instruct the client application to per-
form the same action that it would have performed had the
user activated the selected record. For example, after per-
forming the action associated with the “Click to call” header
in row 2 of Table 2 (such as calling the phone number asso-
ciated with a selected store or other record), the client appli-
cation will then follow the link associated with that selected
item (for example, by passing its associated URL to web
browser 120 to retrieve a merchant’s web page). In another
embodiment, in which client 118 cannot initiate voice and
data communications simultaneously, the (F) designation
could be ignored.

Other options include a “Refresh Channel” (R) action, in
which the current channel is refreshed by virtue of the client
application again sending the most recent HTTP request to
server 128 (or, in other embodiments, to another third-party
server hosting channel data). As a result, server 128 sends
back updated results to the client application and the screen is
refreshed. A related option is the “Refresh Channel and Clear
Search Filter” (S) action, which clears any search filter (such
as a multi-prefix search query) from the HTTP request before
sending it to server 128.

For example, if a user searched a “Starbucks Store Loca-
tor” channel for a store near a particular city, and saw a nearby
store in the results list, the user might select that store record
and activate “Search from here” dynamic menu item, which
would update the user’s “search center” based upon the loca-
tion of that selected store. In that case, however, the user likely

US 9,268,829 B2

45

would want to see updated search results reflecting the new
location, but would not necessarily want those results filtered
by any particular city. The “S” designation in the “Search
from here” header in row 3 of Table 2 would direct the client
to issue a “Refresh” request after removing the existing
search filter. Note that, in one embodiment, all of these steps
occur without requiring the user to leave the client applica-
tion, access the web browser or supply a user ID externally.

The fourth and final “Next Step” action is to “Do Nothing”
(N), in which case the client application performs only the
action specified in the “Action” field shown in Table 1. For
example, the “Add to favorites” header in row 1 of Table 2
would simply add the channel or selected record to the user’s
list of “favorites” (due to the “N” designation in the header’s
“Next Step” field). In another embodiment, a different “Next
Step” action might cause the user’s list of “favorites™ to
appear (for example, as it would when the client application is
initially invoked). As noted above, the “Next Step” field, in
one embodiment, is delimited by a semicolon (*;”).

The next to last field illustrated in Table 1 is the “Menu Item
Name” field which, in one embodiment, is also delimited by
a semicolon (*;”) to separate it from the final “Action” field.
This “Menu Item Name” field contains the text of the name
that will appear in the dynamic menu when it is displayed to
the user on the screen of client 118. As noted above, the order
of these menu items is determined by the “Header Name”
field.

The sixth and final field of the embodiment of a dynamic
menu HTTP header illustrated in Table 1 is the “Action” field.
This field determines the action that the client application will
perform if the dynamic menu item in this header is activated
by the user. This field provides a flexible and dynamic mecha-
nism that facilitates the construction of'a URI that can be sent
to server 128 (or used to invoke a built-in function of the
user’s mobile device) or passed to another client application,
such as browser 120 (depending upon the value of the “Pro-
cessing Type” field discussed above).

The dynamic features of this Action field, in one embodi-
ment, include the ability to extract data fields associated with
a current channel or selected record by referencing a “field
number” or “column” with a dollar sign (for example, “$1”
for field 1, and so forth). The text in the data field associated
with the referenced column replaces the reference (“$1”) and
is inserted into the URI under construction. Moreover, the
URI can include variable names to which a server will assign
values, such as the value of a referenced data field (such as
“varname=$1").

For example, the action associated with the “Add to favor-
ites” header in row 1 of Table 2 is a template for a URI the first
portion of which (for example, http://live.boopsie.com/ser-
vice/set/) appears to be a typical HTTP request to server 128
(or, in another embodiment, to another server hosting channel
data). Based upon its use of the service/set directory structure,
server 128 (in one embodiment) implicitly knows to set vari-
ables to specified values based upon the remainder of the URI
(following the “?” delimiter, indicating that parameters will
follow).

In this case, the remaining portion of the URI consists of
three variable assignments separated by “ampersand” (“&”)
delimiters, followed by (as noted above) “carriage return/
newline” or “V\n” characters, which serve to separate indi-
vidual dynamic menu HTTP headers from one another. Thus,
the “favorite” variable will be assigned the value contained
within “field 17 (in one embodiment, the name of a channel,
category or selected record). The “base” variable is used, in
one embodiment, to provide a standard reference directory
location (stored in “field 0”) to which additional directories

30

40

45

50

55

46

can be appended, such as the “uri” (assigned to the value of
“field 2”), which might contain the channel-specific location,
for example, of the selected favorite channel.

Looking at row 2 of Table 2, this “Click to call” dynamic
menu item will perform a special “tel” action that is built into
the user’s mobile device and accessible from the client appli-
cation. In one embodiment, the client application would
extract the data from “field 4” (for example, the phone num-
ber of the selected record) and pass it to the built-in function
of'the user’s mobile device to initiate a phone call. Depending
upon the capabilities of this built-in functionality, the phone
number might be dialed automatically, or a dialog box might
pop up displaying the phone number and asking the user
whether to initiate the phone call. As noted above, this func-
tionality can even be invoked without requiring the user to
activate the dynamic menu item. For example, if the client
application detects that the user pressed the “Talk” button on
client 118, it would know to invoke this “Click to call”
dynamic menu item due to the presence of the symbolic name
“Talk” after the Action field in this header, as shown in row 2
of Table 2.

The “Action” field of the “Search from here” dynamic
menu item in row 3 of Table 2 is similar to that of the “Add to
favorites” item discussed above. The “name” variable is set to
the value of “field 1,” which represents the name of the
selected record whose location is being used as the new
“search center.”” The “latlon” variable is set to the value of
“field 3,” which contains the latitude and longitude data defin-
ing the location of the selected item. The “response” variable
simply indicates, in one embodiment, that the server is to
generate a textual response, as opposed to returning a web
page.

The “Change location” action in row 4 of Table 2 is a
special command, in one embodiment, to enable the current
channel to be changed temporarily and then refreshed after
the user specifies a new “search center” location. For
example, upon activating the “Change location” dynamic
menu item, the special URI sent to server 128 requests a
temporary change of channel (the data for which is located via
that URI) in response to which server 128 sends a list of zip
codes (the data corresponding to a “Change location” chan-
nel) to be displayed on the client. The user can then search
into, select and activate a desired zip code, whereupon the
user will be returned to the prior channel, which will be
refreshed to reflect the new location.

The “Directions to here” action in row 5 of Table 2 is
processed, in one embodiment, outside the client (based on
the “I” designation in the “Processing Type” field) and passed
to web browser 120 on the user’s mobile device. The URI will
also include the user’s current “search center” location (not
shown). In one embodiment, this URI is sent via web browser
120 to a web server on server 128 which, based on the use of
the “directions” directory, will set the “latlon” variable to the
value ofthe data extracted into the URI from “field 3,” and use
both the “to” and “from” locations passed in the URI to return
a web page containing, for example, a map along with textual
directions. In one embodiment, server 128 relies upon a third-
party web server to return this web page, after passing it the
location data.

The “Action” field of the “Clear location” dynamic menu
item in row 6 of Table 2 is also similar to that of the “Add to
favorites” item discussed above. The “latlon” variable is set to
the value of “field 3,” which contains the latitude and longi-
tude data defining the location of the selected item. After
setting this variable, server 128 is directed (by the “S” desig-
nation in the “Next Step” field) to clear the search filter and
refresh the currently selected channel (as described above).

US 9,268,829 B2

47

The “Action” field of the “Movie details” dynamic menu
item in row 7 of Table 2 is processed outside of the client
application (as is the “Directions to here” dynamic menu
item). In this case, the user, after querying the AOL Movie-
fone channel for a desired movie, selects that movie record
and activates the “Movie details” dynamic menu item. The
client application constructs a relatively complicated URI
(explained below) and passes it to web browser 120. In one
embodiment, this URI is sent via browser 120 to a third-party
site (ADCs Moviefone web site) with a standard HT'TP com-
mand and a set of parameters (assigning data extracted from
channel data columns to specified variables). The “Movie.do”
command instructs the Moviefone web server to return a
“movie details” web page to browser 120 based upon the
specified parameter values.

The “theaterid” variable is set to the data extracted into the
URI from “field 6 (containing a unique ID of the theater at
which the selected movie is playing). The “movieid” variable
is set to the data extracted into the URI from “field 7” (con-
taining a unique ID of the selected movie). The “showtime”
variable is set to the data extracted into the URI from “field 8”
(defining showtimes for the selected movie). Finally, the
“showsynopsis™ variable is set to a constant value of “true,”
indicating that the selected movie’s synopsis should be
included with the other movie details.

As noted above, in one embodiment, dynamic menu items
are not displayed if data fields referenced in a header’s
“Action” field (for example, using the “$” replacement
mechanism discussed above) are empty. This behavior can be
modified, in another embodiment, by including a “question
mark” (“?”) character after the “$” character (for example,
“$?1”), in which case the dynamic menu item would be
displayed even if the referenced data field is empty. Similarly,
use of an “exclamation point” (“1”) character (for example,
“$11”) would invert this behavior, and cause the dynamic
menu item to be displayed only if the referenced data column
is empty. In yet another embodiment, a “percent” (“%”) char-
acter (following a “$” or “$?” or “$!”” character combination)
will direct the client application not to URL-encode the ref-
erenced field data.

In still another embodiment, a “$p” character combination
is used to reference the mobile device’s GPS latitude/longi-
tude coordinates (if GPS functionality is present on the
device). An HTTP header sent by server 128, such as
“B-GPS: 45.394280, -132.224830,” could inform the client
of the current “search center” location (for example, previ-
ously set by the user via a “Search from here” dynamic menu
item). In another embodiment, client 118 sends a standard
“geo.position: lat; lon” header to server 128 with every
request, which server 128 can use, for example, to sort search
results. In other embodiments, additional HT'TP headers can
be employed to cause channel “refreshes” under program
control. For example, a “B-Action: refresh=10sec” header
would direct the client to request a refresh of the current
channel every 10 seconds. Such a feature could be useful, for
example, to obtain updated sporting event scores (perhaps
even based upon the time remaining in an event). Similarly, a
“B-Action: refresh=25mi” header would direct the client to
request a refresh of the current channel whenever the user’s
mobile phone device had traveled one-quarter of a mile (as
indicated by the GPS data). This feature could be useful to
update a map, for example, showing the nearest Starbucks
locations while the user is traveling, or the nearest “homes for
sale” while a realtor is driving across town. Server 128 could
also notify client 118 when the user is within a certain dis-
tance of a selected destination.

10

15

20

25

30

35

40

45

50

55

60

65

48

Many other dynamic menu and related features will
become apparent in the context of the following discussion of
operational aspects of dynamic menus with reference to
FIGS. 11A-C and FIGS. 12A-G below.

C. Dynamic Menu Operation

Referring to FIG. 11A, a client application in one embodi-
ment of the present invention displays a window 1102 when
initially invoked by auser of a mobile communications device
(such as client 118 in FIG. 1A or device 200 in FIG. 2) on
which the client application is loaded. It should be noted that
another similar embodiment of window 1102 is also illus-
trated as window 902 in FIG. 9A.

In one embodiment, Window 1102 contains various com-
ponent display areas, including a small area 1103 for display
ofreal-time and related status information, such as the level of
network connectivity to a mobile communications or other
network. It also includes a search query field 1104, to facili-
tate the entry of user queries, including the multi-prefix que-
ries discussed above, as well as a results display area 1105 to
display the results of such user queries.

When the client application is initially invoked, results
display area 1105 contains a list of various categories of
channels, including a user’s previously designated “favorite”
channels 1106 (as well as links and other previously desig-
nated records) and other available channel categories 1107.
As noted above, results are provided to client 118 by server
128 (typically in response to user requests), and may be
updated over time. In addition, window 1102 may display
certain headings, such as the “Favorite Channels” heading
1108, which describes the collection of user-defined “favor-
ites” displayed below heading 1108 (but which cannot, in one
embodiment, be selected or activated to perform any addi-
tional function).

In one embodiment, window 1102 also includes a “fixed
menu” display area 1109 containing certain commonly-used
features, such as a “Back” menu item that will refresh window
1102 with the results of the previously entered user query (in
one embodiment, by resending the prior user request to server
128 and displaying the updated results of such request). A
“Menu” item is also included in display area 1109 to invoke a
menu with a set of items that provide additional functionality,
as will be explained below. In one embodiment, the “Back”
and “Menu” items can be mapped to and invoked by key-
strokes or buttons on the user’s mobile device.

At this point, a user typically desires to locate a desired
channel (for example, in a “first-tier” search) within which
desired information can then be located (for example, via a
“second-tier” or subsequent-tier query). To facilitate user
queries, a user can enter characters into search query field
1104, or simply select and activate a channel or channel
category. In either case, client 118 submits such user requests
to server 128, which returns a collection of filtered results
which client 118 displays in results display area 1105.
Examples of such multi-tiered and multi-prefix user queries
have been illustrated above in great detail.

In other situations, however, users desire additional func-
tionality beyond that which is afforded by simply entering
user queries and activating channel, channel category and
intra-channel records. As discussed above, the dynamic menu
architecture of the present invention provides such alternative
functionality in the context of the user’s query and other
related state information.

In one embodiment, when the user initially invokes the
client application, client 118 sends an HTTP “GET” Request
as illustrated in Table 3 below. This request includes the
“imenu” function and a reference to the “Home” directory,
which is interpreted by server 128 as a request for the initial

US 9,268,829 B2

49

“top-level” set of channels, categories and favorites that is
illustrated in FIG. 11A. The remaining information contains
data regarding the capabilities of the mobile device, such as
its operating system and version, and display resolution, as
well as the version of the client application.

In response, server 128 also sends a “GET” request, which
directs client 118 to display the “list” of data that follows the
HTTP headers. Server 128 also informs client 118 that the
“Incremental Search” capability is turned “on” (to provide
interactive results as the user types characters into search
query field 1104 in FIG. 11A). Finally, it indicates the length
of the data that follows.

The HTTP headers include 3 dynamic menu headers (“Re-
move from favorites,” “Add to favorites,” and “Refresh”), as
well as a “B-Action: skip-empty-links” header that directs the
client, while navigating, to skip over rows of data that do not
have associated links (for example, to avoid selecting items
such as the “Favorite Channels” heading 1108 in FIG. 11A,
since it has no associated action). As explained above, the
“Refresh” dynamic menu item will request that server 128
refresh the current channel and remove the user’s current
search filter, if any. It will be visible regardless of whether the
focus is on any selected channel or category.

The “Add to favorites” and “Remove from favorites”
dynamic menu items will apply only when an item is selected
(due to the “I” designation in the “Context” field), and will
refresh this top-level collection of channels and categories to
update the list of the user’s “favorites” (for example, after
adding or removing a selected item). The Action fields of
these two headers is similar to that explained in the examples
abovein Table 2, in that it sets the “base,” “favorite,” and “uri”
variables to the values of the data in fields 0, 1, and 2, respec-
tively. In addition, the “Remove from favorites” Action field
includes a “remove” parameter to enable server 128 to distin-
guish this request from an “Add to favorites” request.

Note, however, that a third field (“field 3”) is referenced,
which is used by client 118 to determine whether to display
the “Add to favorites” or “Remove from favorites” dynamic
menu item based on whether the user selected an item on the
user’s list of favorites. For example, as will be discussed
below, each record includes (in one embodiment) a “1” in
“field 3” if it is on the user’s list of favorites. Otherwise, “field
3”is left empty. By using the “$3” designation, the “Remove
from favorites” dynamic menu item will be displayed only if
“field 3” is non-empty, and thus only if the user has selected
an item on the user’s list of “favorites.” Conversely, the “Add
to favorites” dynamic menu item contains a “$!3” designa-
tion, which directs client 118 to display this menu item only
if “field 3” is empty, and thus only if the user has selected an
item that is not on the user’s list of “favorites.”

Following these HTTP headers in Table 3 is the body of the
transmitted message containing the list of data to be displayed
by client 118 in results display area 1105 of window 1102
shown in FIG. 11A. The hex-formatted digits at the beginning
of certain rows of data specify standard color and aesthetic
display information. The “name” to be displayed for each
channel or category (or header) is deemed “field 1” with a
space delimiter separating it from the “uri” in “field 2.” This
“uri,” in one embodiment, is a relative path to assist server 128
in locating the data (HTTP headers and channel data) should
a particular record be selected and activated. Following the
“uri,” the data for “field 3” is displayed, which (in one
embodiment) includes a “1” if the record is on the user’s list
of “favorites,” and is otherwise left empty.

To illustrate how these HT TP headers and associated data
records shown in Table 3 are utilized, consider a common
scenario illustrated in FIG. 11B. A user might desire to

20

40

45

50

50

remove a previously defined favorite channel (or other
record). In one embodiment, the user selects a favorite chan-
nel which the user desires to remove, such as “L.oyola School
Directory” channel 1116 in window 1112, and invokes menu
item 1119¢ in menu display area 1119, which results in the
display of dynamic menu 1115. At this point, client 118
detects that selected record 1116 is on the user’s list of favor-
ites (based on the presence of a “1” in “field 3”), and thus
displays the “Remove from favorites” dynamic menu item
11154 (but not the “Add to favorites” dynamic menu item, due
to the “$!3” designation in its header). It should also be noted
that, in one embodiment, additional menu items are displayed
(for example, “Home” and “All Channels” and others) on
dynamic menu 1115. These “global” menu items can be
“hardwired” into client 118 (for example, not relying on this
dynamic menu HTTP header architecture), or can be consid-
ered as “default” menu items to be displayed unless server
128 indicates otherwise (as discussed above).

Having selected channel 1116, the user can select and
activate “Remove from favorites” dynamic menu item 11154,
which will cause client 118 (in accordance with the Action
field associated with the “Remove from favorites” header
illustrated in Table 3) to construct a URI (extracting informa-
tion from designated data fields) and send an HTTP request to
server 128, which will set the relevant variables (as explained
above). It will then issue a “Refresh” request (due to the “R”
designation in the “Next Step” field) to server 128 to refresh
this “top-level” channel and category list, reflecting the
removed record.

If, however, the user selects a record that is not on the user’s
list of “favorites,” then the “Remove from favorites” item is
not contextually relevant and is not displayed (in one embodi-
ment) when the user invokes a dynamic menu. Turning to
FIG. 11C, for example, if the user selects a record such as
“Business” channel category 1126, and then invokes menu
item 1129a in menu display area 1129, client 118 displays
dynamic menu 1125, which does not contain a “Remove from
favorites” dynamic menu item, but does contain an “Add to
favorites” menu item 1125a.

As discussed above, client 118 detects that selected “Busi-
ness” channel category record 1126 is not on the user’s list of
favorites (based on an empty “field 3”), and thus displays the
“Add to favorites” dynamic menu item 1125a (but not the
“Remove from favorites” dynamic menu item, due to the “$3”
designation in its header). Having selected channel 1126, the
user can select and activate “Add to favorites” dynamic menu
item 1125a, which will cause client 118 (in accordance with
the Action field associated with the “Add to favorites” header
illustrated in Table 3) to construct a URI (extracting informa-
tion from designated data fields) and send an HTTP request to
server 128, which will set the relevant variables (as explained
above). It will then issue a “Refresh” request (due to the “R”
designation in the “Next Step” field) to server 128 to refresh
this “top-level” channel and category list, reflecting the added
record.

One embodiment of the dynamic menu mechanism illus-
trated in FIGS. 11A-11C provides users with contextually
relevant alternative functionality not only by distinguishing
whether a selected record is on the user’s list of favorites (and
displaying the contextually appropriate dynamic menu item),
but also by receiving dynamic menu HTTP headers along
with the results of the user’s request. In other words, as the
user queries different channels for different types of data, the
dynamic menu items also can change to reflect such differ-
ences, even at the level of a particular record.

US 9,268,829 B2

51
TABLE 3

52

REQUEST

GET /imenu?u=http://live.boopsie.com/i/Home/ HTTP/1.1

UA-OS: WinCE (Smartphone) - Version (5.1); Carrier (none); Boopsie - Version (2.0.2.2)

UA-pixels: 320x240 (9 lines)
RESPONSE (not logged in)

GET /list HTTP/1.1

Incremental-Search: on

Content-Length: 1017

B-Menu-Entry-1: IIR; Remove from favorites;

http://live.boopsie.com/service/set/Tremove&favorite=$ 1 &base=$0&uri=$2&if=$3

B-Menu-Entry-2: ITIR; Add to favorites;
http://live.boopsie.com/service/set/?favorite=$ 1 &base=$0&uri=$2 &if=$!3
B-Menu-Entry-4: BIS; Refresh

B-Action: skip-empty-links

#{TF#008 Favorite Channels

CitySearch Silicon Valley i:../CitySearch%20Silicon%20Valley/ 1
Google Gmail http://gmail.com/ 1

Loyola School Directory i:../Loyola%20School%20Directory/ 1
Nokia Music Store i:../Nokia%20Music%20Store/ 1

Wikipedia English The Free Encyclopedia
ir../Wikipedia%20English%20The%20Free%20Encyclopedia/ 1
#{1#35a All Channels i:../All%20Channels/

#{ff#35a Business i:../Business/

#{ff#35a Dating i:../Dating/

#{ff#35a Entertainment i:../Entertainment/

#{Tf#35a Food and Wine i:../Food%20and%20Wine/

#{Tf#35a Google i:../Google/

#{Tf#35a Health i:../Health/

#{T#35a How To i:../How%20To/

#{ff#35a Local i:../Local/

#{T#35a News i:../News/

#{ff#35a Reference i:../Reference/

#{Tf#35a Religion i:../Religion/

#{Tf#35a Shopping i:../Shopping/

#{Tf#35a Social Networking i:../Social%20Networking/

#{T#35a Sports and Recreation i:../Sports%20and%20Recreation/
#{Tf#35a Store Locator i:../Store%20Locator/

#{Tf#35a Technical i:../Technical/

#{Tf#35a Tools i:../Tools/

#{T#35a Travel i.../Travel/

Referring now to FIG. 12A, consider the operation of one
embodiment of the dynamic menu mechanism of the present
invention in the context of a user activating the “Facebook
Friends” channel. Upon locating and activating this channel
(in the manner discussed above), client 118 sends a “GET”
request to server 128, illustrated in Table 4. This request is
very similar to the one shown in Table 3, the primary differ-
ence being the URI path to the “Facebook Friends” directory
on server 128, instead of to the “Home” directory (containing
the list of channels, categories and favorites).

Yet, server 128 detects that the user has not yet logged into
the Facebook web site (at least via the client application), and
thus cannot yet leverage the client application (including, for
example, the interactive multi-prefix, multi-tier and dynamic
menu features of the present invention) to obtain user-specific
profile information, including information regarding the
user’s Facebook friends. Although the user could be logged
into the Facebook web site via web browser 120, this would
not afford the user the benefits of the integrated experience
provided by the Facebook Friends channel (described in
greater detail below).

Inone embodiment, before server 128 delivers to client 118
the “Log into Facebook” page shown in FIG. 12A, server 128
accesses the Facebook web server (via a published API),
obtains an “API key” (in effect logging server 128 into Face-
book) and provides information to Facebook, including a
“user callback URL” that the Facebook web server will sup-
ply to browser 120 in response to a successful authentication
request (which contains the API key). When browser 120

40

45

55

60

65

subsequently accesses this “user callback URL,” it will access
the web browser on server 128, effectively notifying server
128 of the user’s successful authentication, and providing it
with the user’s “session ID” generated by the Facebook web
server.

By leveraging this relatively common API mechanism (and
other techniques discussed in greater detail below), server
128 can provide users with a significant degree of interoper-
ability between the client-server application of the present
invention and standard web browsers such as web browser
120. For example, because the Facebook web server is aware
of server 128 (via the API key), it can deliver to browser 120
the “Log into Facebook” web page shown in FIG. 12A, which
includes information specific to the client-server application
of the present invention (for example, the message 1207
requesting the user to log into Facebook to enable the “Boop-
sie” application to deliver the user’s list of friends).

Returning to Table 4, the “GET” request in the “Response”
from server 128 is also very similar to the one discussed above
and shown in Table 3. The associated data is relatively simple,
including only textual directions to the user and a single
selectable record with an associated “login” action. The
single dynamic menu “Refresh” HTTP header is very similar
to the Refresh header shown in Table 3, except that it does not
clear the user’s search filter (due to the “R” designation in the
header’s “Next Step” field).

One major difference, however, is the presence of security
information, since the user must log into (albeit somewhat
indirectly) the actual “Facebook™ web site. In one embodi-

US 9,268,829 B2

53

ment, server 128 generates a “MOFIID,” which is a form of
user or session ID that is specific to the “pairing” of the user
and a particular channel, such as the Facebook Friends chan-
nel. To enhance security, each user is assigned different
authentication credentials with respect to each channel the
user accesses (assuming such channels or web sites require
user authentication). This strengthens security (as will
become apparent below) by preventing multiple web sites
from having access to a user’s “common” authentication
credentials, while still affording server 128 the ability to
communicate with the Facebook web server on behalf of the
user to obtain user-specific information and provide
enhanced functionality to users of both the Facebook web site
and the Facebook Friends channel.

The “B-MOFIID: 2wl6n9pX5z4cV” header shown in
Table 4 provides the user’s MOFIID to the client application.
In addition, the URI (shown in Table 4) associated with the
user’s activation of the “Log into Facebook” record (illus-
trated in FIG. 12A) contains both the API key (connecting
server 128 with Facebook) and the MOFIID (used by server
128 to distinguish among users of the Facebook Friends chan-
nel). These mechanisms are used, in one embodiment, to
enable users to log into Facebook via a standard web browser,
such as browser 120, without foregoing the functionality
provided by the Facebook Friends channel.

At this point, the user’s only effective choice is to activate
the “Log into Facebook™ link or record 1206 to initiate the
login process. In one embodiment, the client application then
passes the URI shown in Table 4 to browser 120, which the

10

15

20

25

54

the “Log in” link 1225, the Facebook web server proceeds not
only to log the user into Facebook and generate a session ID
(for subsequent access to user-specific information on the
Facebook web site), but also to use the “user callback URL”
described above to redirect web browser 120 to a web page on
server 128 corresponding to that URL (as well as provide the
user’s session ID). This process effectively serves to notify
server 128 of the user’s successful Facebook login, as well as
provide server 128 with the user’s newly-generated Facebook
session ID. Server 128 utilizes the user’s MOFIID (which is
also forwarded by the Facebook web server, along with the
session ID that it generated) to distinguish among its own
users that access the Facebook Friends channel.

At this point, server 128 can utilize the user’s MOFIID and
session ID to issue requests to the Facebook web server for
user-specific information, such as the user’s list of friends.
However, in one embodiment, rather than leave the user in the
web browser interface, the web server on server 128 can
respond to the request from browser 120 (for the web page at
the “user callback URL” located on server 128) by download-
ing a “.MOFI” file, which will cause browser 120 to invoke
the client application automatically—much in the same way
that any downloaded file with an extension to a third-party
application (such as “xls” for Microsoft Excel or “.pdf” for
Adobe Acrobat), can cause a web browser to launch that
application automatically upon downloading that file.

This non-standard use of a relatively standard mechanism
enables the user, after having logged into Facebook via
browser 120, to automatically be returned to the client appli-
cation providing the Facebook Friends channel.

TABLE 4

REQUEST

GET /imenu?u=http://live.boopsie.com/i/Facebook%20Friends/ HTTP/1.1

UA-OS: WinCE (Smartphone) - Version (5.1); Carrier (none); Boopsie - Version (2.0.2.2)
UA-pixels: 320x240 (9 lines)

RESPONSE (not logged in)

GET /list HTTP/1.1

Incremental-Search: on

Content-Length: 257

B-MOFIID: 2wl6n9pX5z4cV

B-Action: skip-empty-links

B-List-Mode: refreshs

B-Menu-Entry-1: BIR; Refresh

#1Tf#3b5998 facebook

#{T#6d84b4 please log in

Please log in, so that Boopsie for Facebook may load your Friends list.
Log into Facebook\thttp://m.facebook.com/login.php
2api_key=4a7075ed5921884c5¢741c13a83¢25e0&v=1.0&next=mofiid%3d2wl6nghj5z4cV

client application launches to initiate the process of logging
the user into the Facebook web site. In response, the Face-
book web server delivers to browser 120 the web page 1212
shown in FIG. 12B. Note that this web page also includes
information specific to the client-server application of the
present invention, such as the message 1214 requesting that
the user log into Facebook via web page 1212 to enjoy the full
functionality of the “Boopsie” application. Message 1214
also provides the user with an optional link to log into Face-
book directly (for example, if the user desires to circumvent
the “Boopsie” client application and the benefits afforded by
the Facebook Friends channel).

Web page 1212 includes fields in which the user can enter
standard authentication information, including email address
or phone number field 1216, password field 1217 and an
optional save login info checkbox 1218. After filling in the
relevant login info, as illustrated in FIG. 12C, and activating

50

55

60

65

When the client application “refreshes” its request for the
“Facebook Friends” channel (automatically upon activation,
for example, in one embodiment), it reissues the same GET
request, now shown in Table 5. However, because server 128
now knows that the user is logged into Facebook, it issues a
different response, illustrated in FIG. 12D.

The HTTP headers shown in Table 5 include the MOFIID
data and progress information (indicating, for example, that
records 1 to 20 of 97 records have been retrieved), as well as
seven dynamic menu HTTP headers that provide functional-
ity specific to the Facebook Friends channel, in addition to the
data that follows, which includes a list of the user’s friends
and identifying information (including a unique “friend ID”
that server 128 can use to obtain information specific to a
particular “friend” record from the Facebook web server).

Turning to FIG. 12D, window 1232 includes user search
query field 1234 and results display area 1235, which con-

US 9,268,829 B2

5§

tains data headings 1238 indicating that Facebook friends
1-20 of 97 are displayed below. These “friend” records 1236
contain summary information about the user’s friends. If any
such record is activated, an associated action will be per-
formed, such as invoking web browser 120 to request a “deep
link” from the Facebook web site for a profile of the selected
friend. In addition, menu display area 1239 includes menu
item 1239a, which enables the user to display a dynamic
menu.

The dynamic menu HTTP headers shown in Table 5 pro-
vide a variety of Facebook-specific functionality. With the
exception of the “Refresh” and “Log out” headers, which are
performed by the client application, the remaining headers
contains URIs that, when constructed, will be passed to
browser 120. Yet, using the mechanisms discussed above with
respect to the Facebook login process, the client application
can be invoked from browser 120, enabling additional func-

10

15

56

selected friend’s record). For example, the user could activate
dynamic menu item 1245a to “poke” selected friend 1246
(via Facebook).

Upon activation of the “Poke friend” dynamic menu item
12454, the client application constructs the URI (from the
Action field shown in Table 5), and passes it to browser 120
(including the “poke” parameter containing the selected
friend’s user ID extracted from “field 3” of the data shown in
Table 5). In one embodiment, after “poking” the selected
friend, browser 120 may notify the user that the “poke” was
successful and then (using the “.MOFI” technique discussed
above) automatically invoke the client application, which will
“refresh” the user’s list of friends. In another embodiment,
the user will remain in the browser 120, but can still return
manually to the client application, which will be refreshed
automatically.

TABLE §

REQUEST (same as before)

GET /imenu?u=http:/live.boopsie.com/i/Facebook%20Friends/ HTTP/1.1

UA-OS: WinCE (Smartphone) - Version (5.1); Carrier (none); Boopsie - Version (2.0.2.2)
UA-pixels: 320x240 (9 lines)

RESPONSE (logged in)

GET /list HTTP/1.1

Incremental-Search: on

Content-Length: 1140

B-MOFIID: 2wl6n19pX5z4cV

B-Action: skip-empty-links

B-Progress: 1 to 20 of 97

B-Menu-Entry-1: ION; Add to friends; http://live.boopsie.com/host/facebookfriends/?add=$4
B-Menu-Entry-2: ION; Poke friend; http:/live.boopsie.com/host/facebookfriends/?poke=$3
B-Menu-Entry-3: ION; Message friend;
http://live.boopsie.com/host/facebookfriends/?message=$3

B-Menu-Entry-4: ION; Wall of friend; http:/live.boopsie.com/host/facebookfriends/?wall=$2
B-Menu-Entry-5: BON; My profile; http://live.boopsie.com/host/facebookfriends/?profile
B-Menu-Entry-6: BIS; Refresh

B-Menu-Entry-7: BIR; Log out; http://live.boopsie.com/host/facebookfriends/?logout
#1Tf#3b5998 facebook

#1T#6d84b4 97 friends (1 to 20 0f 97)

Aaron Levie|Box.net / USC / Silicon Valley, CA 3402659 3402659

Adam Fritzler|BitTorrent, Inc. / San Francisco, CA 545323645 545323645

Adriane Rose|RIT / CCRI 24416529 24416529

Alex Feinberg|Santa Clara / Yahoo! / Silicon Valley, CA 7305243 7305243

Allan Pichler| 651958736 651958736

Andy Wick|Virginia Tech / Washington, DC 691927740 691927740

Ardy F.ISilicon Valley, CA 512018645 512018645

Bahram AfsharilSilicon Valley, CA / Stanford 681147213 681147213

Barbara Meier|Brown / Providence, RI 1013164 1013164

Brad Cleveland|Silicon Valley, CA 587478487 587478487

Brad Kay.Goodman|Boston, MA 713076764 713076764

Brian Greenberg|East Bay, CA 593872292 593872292

tionality to be performed from within the client application,
apart from simply issuing a “deep link” and leaving the user
in the web browser.

The “My Profile” header references a location on server
128 in which the user’s Facebook profile information is
stored. The other dynamic menu headers extract the ID of a
selected friend (using, for example, the “$2” replacement
mechanism discussed above) to enable server 128 to obtain
information relating to that friend from the Facebook web
server on behalf of the user (using the “session ID” and
“MOFIID” as discussed above).

If the user selects a particular friend, such as friend record
1246 shown in FIG. 12E and invokes dynamic menu 1245 (for
example, via menu item 1239q in FIG. 12D), the user can
elect to perform various alternative Facebook-specific func-
tions related to that selected friend (apart from the retrieval of
that selected friend’s profile, for example, by activating the

50

55

60

65

The user might also desire to filter a large list of friends to
locate a desired friend. For example, the user might enter a “d
m” multi-prefix query into search query field 1254 in FIG.
12F, the results of which can be displayed by the client appli-
cation in window 1252. The heading information 1258 is
updated to reflect the filtered list of 4 friends, and only these
4 friend records 1256 are now displayed (in accordance with
the results received by client 118 and shown in Table 6).

If the user selects friend record 1266 shown in window
1262 in FIG. 12G, and invokes dynamic menu 1265 (for
example, via menu item 1259¢ in FIG. 12F), the user might
then elect, for example, to activate dynamic menu item 1265a
to “message” that selected friend 1266 (via Facebook).

Upon activation of the “Message friend” dynamic menu
item 12654, the client application constructs the URI (from
the Action field shown in Table 6), and passes it to browser
120 (including the “message” parameter containing the

US 9,268,829 B2

57

selected friend’s user 1D extracted from “field 3” of the data
shown in Table 6). In one embodiment, after “messaging” the
selected friend, browser 120 may notify the user that the
“message” was sent successfully and then (using the
“MOFTI” technique discussed above) automatically invoke
the client application, which will “refresh” the user’s list of
friends. In another embodiment, the user will remain in the
browser 120, but can still return manually to the client appli-
cation, which will be refreshed automatically.

Turning to Table 6, it can be seen that the “GET” request
has changed only slightly to reflect the search query (“c=d+
m”) and to employ a “wwu” (instead of an “imenu”) com-
mand, which is a relatively minor implementation decision.
The dynamic menu HTTP headers have not changed in
response to the user’s query (though, in other embodiments,
they could be modified under control of server 128 to reflect
a different state or context). Finally, the filtered set of results
(4 “friend” records) are included for display by client 118, as
shown in FIGS. 12F and 12G.

TABLE 6

10

15

58

portion thereof) may depend upon a number of factors, such
as keywords on the page, search terms used to reach the page,
the location of the user (reader), as well as the user’s recorded
viewing history and other demographic information. Such
“contextual” information enables the ad to be more “targeted”
to a set of users desired by the advertiser, and hence more
valuable to the advertiser.

While any webpage or website provides opportunities for
ad inventory, search sites in particular offer prime opportuni-
ties for advertisers due to the fact that users are inherently
searching for specific subject matter, as evidenced (at least in
part) by the query search terms they enter. In the context of
mobile search, as emphasized above, minimizing user inter-
action is of particular importance. By integrating predictive
text techniques into a targeted ad service (as described in
greater detail below), mobile search can be greatly enhanced,
and ad inventory greatly increased, all with minimal user
interaction.

REQUEST (with filter “d m”)

GET /wwu?c=d+mé&u=http://live.boopsie.com/i/Facebook%20Friends/ HTTP/1.1
UA-OS: WinCE (Smartphone) - Version (5.1); Carrier (none); Boopsie - Version (2.0.2.3)

UA-pixels: 320x240 (9 lines)
RESPONSE

GET /list HTTP/1.1
Incremental-Search: on
Content-Length: 305
B-MOFIID: 2wl6n9pX5z4cV
B-Action: skip-empty-links
B-Progress: 1 to 4 of 4

B-Menu-Entry-1: ION; Add to friends; http://live.boopsie.com/host/facebookfriends/?add=$4
B-Menu-Entry-2: ION; Poke friend; http:/live.boopsie.com/host/facebookfriends/?poke=$3

B-Menu-Entry-3: ION; Message friend;
http://live.boopsie.com/host/facebookfriends/?message=$3

B-Menu-Entry-4: ION; Wall of friend; http:/live.boopsie.com/host/facebookfriends/?wall=$2
B-Menu-Entry-5: BON; My profile; http://live.boopsie.com/host/facebookfriends/?profile

B-Menu-Entry-6: BIS; Refresh

B-Menu-Entry-7: BIR; Log out; http://live.boopsie.com/host/facebookfriends/?logout

#T#3b5998 facebook
#{T#6d84b4 4 friends

Dan Manheim|Los Angeles, CA / UCLA / Threshold Marketing 596495304 596495304

Dave McNabolalAustin, TX / Duke 1079384606 1079384606
Denis Ford|Seattle, WA / Microsoft 757528454 757528454

Douglas Cheline| Thunderbird School of Global Management 293500041 293500041

IV. Ad Service and Predictive Text

As noted above, to minimize user interaction during entry
of a search query, predictive text has been employed interac-
tively to suggest various search query terms, enabling a user
to select desired query terms. Such suggested search query
terms can also be employed to present search results to a user,
enabling a user to see “suggested results” without any addi-
tional interaction, including the selection of suggested query
terms. Such an approach provides an opportunity for using
suggested search query terms (as well as additional contex-
tual information) for another purpose entirely—interactive
advertising, in which targeted ads (generated from suggested
search query terms, search results and/or other contextual
information) are presented to the user along with suggested
search results.

As media has become interactive, printed magazines fea-
turing static articles and static ads have evolved into interac-
tive pages (e.g., web pages) in which each page presents one
or more opportunities to display advertising. Such opportu-
nities represent “ad inventory” for which advertisers compete
to reach desired customers. The ad served for a given page (or

45

50

55

60

65

A. Predictive Text Overview

Turning to FIG. 16A, an existing interactive “suggest”
service (““Yahoo Suggests™) is illustrated, in which suggested
query search terms 1610 are presented to the user while the
user enters keystrokes 1620 of a desired query. In this
example, the user desires to enter the query “briefcase,” but
has thus far only entered the first three letters “bri” when the
service presents various suggested query search terms 1610
(including “britney spears,” british airways” and others, in
addition to the desired query itself—*briefcase”).

As illustrated in FIG. 16B, the user can then select the
desired query 1650, “briefcase,” with a single click of the
mouse, resulting in the display of the search results 1660
corresponding to query 1650. Thus, instead of typing all nine
letters of the desired query 1650, the user merely types the
first three letters 1620 and selects the desired query 1650 from
the suggested query search terms 1610 with a single click of
the mouse, and achieves the same results with far less user
interaction.

A similar “suggest” mechanism is employed in the context
of'a multi-prefix search, as illustrated in one embodiment of

US 9,268,829 B2

59

the present invention in FIG. 17. A user enters multiple pre-
fixes “j” and “k” as a partial query 1710 to search a “Wikipe-
dia English” channel 1720, in response to which a matching
set of titles of Wikipedia entries 1730 is displayed.

It should be noted that, in this context of a channel-specific
search, the displayed suggestions are, in effect, a hybrid of
“suggested queries” and “suggested results” in that the chan-
nel constrains the domain of potential results. In other words,
while the multi-prefix query “§ kK might yield numerous
phrases with consecutive words starting respectively with *§”
and “k,” only those phrases that match the titles of Wikipedia
entries (a far more constrained domain of potential results)
will be displayed. The user can then select a desired entry
from among the displayed set of titles of Wikipedia entries
1730, in response to which the detailed results corresponding
to the selected entry (not shown) will be displayed.

For example, in FIG. 18, the user enters the partial multi-
prefix query 1810 “h go” to search a “Yahoo Orlando Area
Hotels” channel 1820, which yields (due to the heavily con-
strained domain of entries in this channel—i.e., hotels in the
Orlando, Fla. area) a set of matching results 1830, each of
which is an entry containing the name, address and phone
number of a “Hilton Garden” hotel in the Orlando, Fla. area,
along with the distance to the hotel from the user’s current
location (additional contextual information, not shown, pro-
vided by the user—e.g., via a GPS device in the user’s mobile
phone). in this embodiment, the user enters only a partial
multi-prefix query 1810 consisting of a few keystrokes (“h
ga”) and is presented with a set of matching “suggested
results” 1830 without any further interaction (such as com-
pleting and/or submitting the query).

B. Ad Service and Predictive Text Architecture

Turning to FIG. 19, one embodiment of a system architec-
ture of the present invention is illustrated which provides
users with targeted ads along with query results, while still
requiring only minimal user interaction (as noted above, a
significant feature in the context of mobile search systems).
By improving the nature of the “predictive text” (e.g., by
constraining the search to one or more particular channels,
including additional contextual information or simply
improving the prediction algorithms), the targeting of the ads
also improves (i.e., because the ads, as well as the results, are
generated from the predicted query terms). In other embodi-
ments, the ads are generated from the search results them-
selves, without any need for intermediate predicted query
terms.

It should be emphasized that, if an ad server relied solely on
the single or multi-prefix partial queries as input, its ability to
generate highly targeted ads along with the relevant results
would be significantly impaired. Moreover, the additional
contextual information (e.g., a user’s demographics, geo-
graphic location, viewing history, etc) further enhances the
effectiveness of both the search results and the ad targeting.

The networked architecture illustrated in FIG. 19 relies on
a network 1910 (e.g., the Internet) to which users are con-
nected via client devices such as client 1920 (e.g., a mobile
phone, personal computer, etc.). In one embodiment, in
which users conduct searches, client 1920 provides query
information 1925 to the network including partial multi-pre-
fix queries (e.g., as a user enters keystrokes) and GPS infor-
mation regarding the user’s location (whether provided
manually by a user or automatically viaa GPS device in client
1920). It should be noted that query information 1925 could
include other information such as a user’s demographic pro-
file or variety of behavioral data relating to the user’s inter-
actions via client 1920.

25

30

40

45

55

60

In any event, query information 1925 is provided via net-
work 1910 to search server 1930 (also connected to network
1910), which conducts a search of the relevant channels or
other databases as described in detail above, and ultimately
delivers search results 1935 back to client 1920 via network
1910. In addition to conducting a search based upon the query
information 1925 provided by the user, search server 1930
also (in one embodiment) generates suggested query terms
(e.g., “predicted text” from the partial multi-prefix queries)
which are supplied, along with GPS and other contextual
information (such as a user’s demographic profile and/or
dynamic behavioral data) to a targeted ad server 1940.

Together, this “suggested” query data 1937 (which can
include the search results themselves, along with other con-
textual information) is processed by targeted ad server 1940
to yield targeted advertisements 1945 that, together with
search results 1935 (and, in some embodiments, suggested
query terms), can be provided as a unified set of results 1950
(e.g., relevant search results along with related targeted ads)
to the user via client 1920 and network 1910. In this manner,
the user’s interaction with client 1920 can be limited to the
entry of a few keystrokes (e.g., representing a partial single or
multi-prefix query), while still yielding a set of results 1950
that includes both relevant matching entries 1935 from the
particular channels or other databases being searched (per-
haps constrained via GPS or other contextual information)
and relevant targeted ads 1945 generated by targeted ad server
1940 (based upon suggested query terms and/or search results
generated by search server 1930 from the user’s partial query
information 1925).

As noted above, as search server 1930 employs more effec-
tive “predictive text” techniques to generate suggested query
terms and search results, which it supplies to targeted ad
server 1940 (along with GPS data, user demographic profile
and behavioral data, and other contextual information) via
network 1910, more highly targeted ads 1945 can be gener-
ated by targeted ad server 1940, enabling system operators to
expand their ad inventory (even within a given search, as users
enter keystrokes) and obtain a greater premium from adver-
tisers for delivering more effective and targeted ads.

For example, targeted ad server 1940 could do little if
presented with a query such as “h go” 1810 shown in FIG. 18.
But, once search server 1930 leverages the constraints inher-
ent in the selected channel 1820 (“Yahoo Orlando Area
Hotels™) to generated suggested query terms (e.g., “Hilton
Garden”), then it can not only generate a more precise set of
search results (e.g., “Hilton Garden Inn” entries from the
channel database), but it can also supply targeted ad server
1940 with more effective suggested query terms (such as
“Hilton Garden”) or search results that will yield ads that are
far more targeted to the user and more correlated to the results
of'the user’s query.

C. Ad Service and Predictive Text Operation

FIG. 20 illustrates the dynamic operation of a system
embodiment of the present invention, including the interac-
tion of each client 2020 with the search server 2030 and an
associated targeted ad server 2040. In addition to serving
multiple clients, other embodiments may include more than
search server or targeted ad server.

A user initiates the search process via client 2020 by enter-
ing, in step 2022, one or more keystrokes representing single
or multi-prefix search terms. In step 2024, client 2020 sends
these keystrokes to search server 2030 which, in step 2032,
computes search results (as described in greater detail above)
and possibly also suggested query terms, in either case rely-
ing (in one embodiment) on an index of results for the chan-
nels or other databases being searched. In step 2036, search

US 9,268,829 B2

61

server 2030 sends those search results and/or suggested query
terms to targeted ad server 2040.

In step 2026, client 2020 also sends to search server 2030
other contextual info, such as GPS data identifying the user’s
current location, as well as user demographic profile and
dynamic behavioral data. In step 2034, search server 2030
sends such contextual info to targeted ad server 2040 to facili-
tate the generation, in step 2042, of relevant targeted ads.
Targeted ad server 2040 thus relies not only on search results
and/or suggested query terms generated by search server
2030, but also on this other contextual info to further target
relevant ads to particular classes of users. It should be noted
that targeted ad server 2040 can generate targeted ads from
entire result pages automatically (e.g., based on the keywords
on those pages, including their order, frequency and other
factors), a set of supplied keywords and/or various metadata
and other information.

Targeted ad server 2040 then sends these targeted ads, in
step 2044, to search server 2030 which, in step 2038, sends
both the search results and targeted ads to client 2020, which
integrates and presents them to the user as a unified set of
results. As a result of this interaction among client 2020,
search server 2030 and targeted ad server 2040, the user
receives both relevant search results and related targeted ads
with minimal user interaction—e.g., while entering one or
more keystrokes representing partial single or multi-prefix
search terms. In this manner, the user can interactively modity
these relatively few keystrokes dynamically (e.g., by adding
or revising keystrokes) upon receiving results and targeted
ads in response to each keystroke or set of keystrokes, thereby
quickly improving search quality with minimal user interac-
tion.

FIG. 21 illustrates this process from the user’s perspective.
Upon entering the partial multi-prefix query “fl st” 2110 to
search the “Epicurious Recipes™ channel 2120, the user is
presented with a set of recipe titles 2130 for “flank steak”
(analogous to the Wikipedia entries 1730 in FIG. 17), along
with a related targeted ad 2140—a “Safeway” beef ad. With
minimal user interaction (i.e., the entry of a few keystrokes),
the user is able to retrieve, dynamically and interactively (as
each keystroke or set of keystrokes is entered) relevant search
results (due to the generation of suggested search terms and
the constrained nature of a channel-specific search) as well as
highly targeted ads. In one embodiment, additional contex-
tual information (e.g., GPS data identifying the user’s loca-
tion) might narrow these search results or targeted ads even
further (e.g., to a nearby “Safeway” store).

It should be noted that existing ad servers would not likely
generate such targeted ads (e.g., a Safeway beef ad in the
context of flank steak recipes) from the user’s limited input
(“fl st”). The constrained nature of a channel-specific search,
coupled with the utilization of search results (and/or key-
words therefrom) as input to the ad server, significantly
enhances the effectiveness of the ad server in generating
relevant ads targeted to the user’s desired search results (and
perhaps even to the user’s location, profile, and other demo-
graphic and behavioral information).

V. Facilitating the Development and Sharing of Apps Using
Collaborative Services

Asnoted above, collaborative cloud apps facilitate many of
the actions involved in the acquisition, sharing and presenta-
tion of user content. Users of such apps collaboratively create
and/or import content. They identify and define sharing
opportunities, including distinct groups of individuals that are
authorized to access and/or modify some or all of the content.
These apps provide authentication features to control the

40

45

60

62

subsequent sharing (e.g., viewing and/or modifying) of par-
ticular content, as well user interfaces to present the content to
authorized users.

Cloud apps such as Google Docs enable users to maintain
and share general-purpose documents via a simple, flexible
and easy-to-use interface that accommodates a wide range of
data formats. While Google Docs enables users to view and
edit these general-purpose documents, the Google Docs plat-
formis necessary to enable external apps (via Google APIs) to
access the documents via associated cloud services.

In one embodiment of the present invention, existing cloud
platforms are employed to provide a separation between the
acquisition and maintenance of shared user content (per-
formed by a group of users on a cloud app such as Google
Docs) and the interpretation and repurposing of that content,
as well as the leveraging of existing cloud services (per-
formed by external apps and services)—so as to provide
additional “vertical” features that enable users to interact with
the content in a meaningful way in the context of a particular
content domain.

In one embodiment of a system 2200 of the present inven-
tion, illustrated in FIG. 22, a network 2210 such as the Inter-
net interconnects one or more client devices 2220a-2200n
with an existing cloud platform 2230 and an app server 2240.
Client devices 22204-22007 can include virtually any net-
worked device, such as desktop and laptop computers, tele-
visions (e.g., with support for online widgets such as “Yahoo
Widgets”), mobile phones and various other mobile devices
(including relevant I/O hardware such as keyboards, keypads,
monitors, touchscreens, etc.). In this embodiment, such net-
worked client devices 22204-22007 also include web brows-
ers 2222a-2222n and one or more client apps 2224a-2224n
(such as external apps that interact with cloud platform 2230
and/or app server 2240).

Users of client devices 22204a-2200# can, as noted above,
utilize one or more cloud apps 2235 (e.g., Google Docs) on
cloud platform 2230 to create and/or import shared content
2237, including desired access control settings that dictate
which users can view and/or modify some or all of the shared
content 2237. Users can perform these activities before, dur-
ing and after the development of vertical “client” app 2245
and app services 2247, both of which are hosted on app server
2240.

It should be noted that, in one embodiment, client apps
2224a-2224n subsume the functionality of client app 2245,
and are thus hosted locally on client devices 2220a-2200z,
with access to app services 2247 (obviating the need for client
app 2245). In other embodiments, this functionality is
embodied in client app 2245, accessible to users of client
devices 22204-22007 via web browsers 2222a-2222n or cli-
ent apps 2224a-2224xn. In other words, such “vertical” app
functionality can be hosted entirely on the client or server
side, or distributed among both.

As will be discussed in greater detail below, app services
2247 leverage cloud services 2239 (via API 2238) to access,
interpret and manipulate shared content 2237 so as to facili-
tate its repurposing to a particular “vertical” content domain.
In other embodiments, the functionality of app services 2247
can be partially or wholly embodied in client app 2245 (or in
client apps 2224a-2224n).

As noted above, users can specify desired access control
settings and generate and maintain shared content 2237 using
a cloud app 2235 such as Google Docs. As will be discussed
in greater detail below, users can maintain multiple such
documents in shared content 2237 for use by one or more
external apps (including external services 2247, client app
2245 and client apps 22244a-2224n).

US 9,268,829 B2

63

A sample Google Docs document 2300 is illustrated in
FIG. 23. Apart from the access control settings (not shown),
Google Docs accommodates a wide variety of data formats
and object types (text, pictures, video, tables with embedded
objects, etc.). In one embodiment, a simple tabular format is
employed to enable users to distinguish discrete types of
content without imposing semantics on the content that might
constrain its use by external apps.

For example, table 2310 in document 2300 includes 3
columns—an “id” column to identify each row oftable 2310,
an “item” column to identify various types of data embedded
in document 2300 (or in table 2310), and a “description”
column to describe the type of data referenced in the “item”
column. As noted in the first row of table 2310, Google Docs
supports the embedding of'a table 2310 in document 2300. As
noted in the third row, both document 2300 and table 2310 can
include free-form text, as well as embedded images (as noted
in the second row), including image 2320 (embedded in the
“description” column of the second row of table 2310, along
with free-form text) and image 2330 (embedded at a certain
location within document 2300).

It should be noted that users can employ Google Docs not
only to embed various types of objects, but also to impose
some structure on their content. For example, users might
agree to impose a structure that includes a document title
2312 and description 2314, as well as an embedded image
2330 distinct from table 2310. Moreover, the rows of table
2310 enable users to distinguish, for example, individual
books, players on a team or virtually any other elements of a
set. The columns can be used similarly, and could provide
additional information associated with an individual player or
book. As will be discussed below, metadata can be included
(explicitly or implicitly in the structure of the content) to
facilitate a particular use or interpretation of certain content
(e.g., a column heading indicating that text in that column
represents a date generally, or the date of a particular game).

This structure, in one respect, is designed to enable users
who view the document to interpret the content. In the context
of'the present invention, however, the content and its structure
(including metadata) are also utilized to facilitate the inter-
pretation and repurposing of the content (by external apps and
services) to a particular “vertical” content domain.

For example, an external app might interpret image 2330 as
its app icon, and title 2312 as its app title, both visible to users
viewinga list of apps on their devices. When the user launches
the app, a list of items from the “item” column of table 2310
might be displayed. When the user clicks on an individual
item, the contents of the “description” column corresponding
to that item might be displayed.

More substantive examples will be discussed in greater
detail below; but even this simple example illustrates how
“vertical” features and semantics can be applied to the “raw”
content stored in a Google Docs document, such as document
2300, as well as how metadata and the structure of that con-
tent can influence and facilitate the implementation of such
features.

Turning to FIG. 24, a sample spreadsheet document 2400 is
illustrated, which is generated by another related cloud app,
Google Spreadsheets. Note that a single Google Spreadsheets
document (spreadsheet) can include multiple different
“worksheets” (two in this case, the first entitled “data” and the
second entitled “metadata”). Only the first worksheet within
spreadsheet 2400 is illustrated in FIG. 24. It includes a table
with three columns (“name,” “address” and “phone™), iden-
tifying individuals and their corresponding names, addresses
and phone numbers.

10

15

20

25

30

35

40

45

50

55

60

65

64

Apart from the different core features offered by spread-
sheets (e.g., formulas and calculated cells, graphic displays,
etc.), as opposed to word processors, Google Spreadsheets
offers many similar capabilities in the context of the present
invention. Both accommodate the embedding of various dif-
ferent types of objects and the presentation of data in a tabular
format. Yet, their emphasis is different. While Google Docs is
oriented toward free-form text with embedded tables and
images, Google Spreadsheets is oriented toward tables with
embedded text and images.

Of course, there are always design tradeotfs in determining
which cloud app to use for a specific scenario, though mul-
tiple different cloud apps, even from different vendors, could
be used with respect to a particular “vertical” client app. In
any event, the central benefits of the present invention remain
the same, and the tasks performed both by users and app
developers are greatly simplified.

A. Process of Leveraging Cloud Services to Facilitate the
Development of Client Apps

FIG. 25 illustrates one embodiment of a process 2500 of
the present invention by which app services 2247 (see FIG.
22) leverage cloud services 2239 to update and repurpose
shared content 2237 and (optionally) generate or regenerate
clientapp 2245 (e.g., deployed as client apps 2224a-22247 on
client devices 2220a-2220z). It should be noted that this
client application or app can take on various different forms,
including downloadable widgets, mobile applications, ajax
badges, Facebook or MySpace apps, etc.

It should also be noted that the generation of the app, in one
embodiment, is fully automated (including deployment on a
client device), while in other embodiments, portions of the
app development process are performed manually. For
example, the deployment of an iPhone app may require sub-
mission to and approval from Apple’s App Store. Moreover,
the developer of an app may implement certain “vertical”
features manually, relying upon app services 2247 to inte-
grate the repurposed shared content into the code embodying
those features. To facilitate rapid app development, the verti-
cal features desired for various different content domains are
first integrated into app services 2247, which can interface
with both cloud platforms and client apps, and which can
repurpose shared content 2237 to particular content domains.

In the embodiment illustrated in FIG. 25, a group of users
is presumed to have created one or more documents in Google
Docs and shared them with an email address corresponding to
app server 2240. As noted above, although the sharing mecha-
nism implemented on cloud platform 2230 was intended for
the sharing of documents with people, it is being utilized in
the present invention to share the documents with a computer.
In this embodiment, app services 2247 periodically polls
cloud services 2239 and examines the shared documents to
determine whether any have been modified (e.g., whether the
“etag” of any document has changed since last checked, indi-
cating that the document or its access control settings have
been modified), in which case app services 2247 updates and
repurposes the content (which can be partially or entirely
stored on app server 2240) and optionally builds or rebuilds
(and deploys) client app 2245. In another embodiment, cloud
services 2239 could contain a mechanism to notify app ser-
vices 2247 automatically whenever one or more documents
(or their access control settings) have been modified, obviat-
ing the need for any polling.

Returning to the embodiment illustrated in FIG. 25, app
services 2247 polls cloud services 2239 every minute, trig-
gered as shown in step 2510. In step 2520, the Google Docs
API is employed to retrieve a list of previously shared docu-
ments. The list is examined in step 2525 to determine whether

US 9,268,829 B2

65

any documents remain to be processed. If not, the process
concludes in step 2550. Otherwise, the etag of the next docu-
ment to be processed is examined in step 2535 to determine
whether the document (or its access control settings) has been
modified (i.e., since the etag was last checked a minute prior).
Ifthe etag has not changed, indicating that the document has
not been modified, then the process returns to step 2525 to
examine the next document on the list. Otherwise (i.e., the
etag has changed, perhaps because a new document has been

66

independent of the work being performed by the app devel-
oper, such as the development of “vertical” features inte-
grated into client app 2245 and, to the extent possible, into
app services 2247.

Finally, the metadata table 2650, shown in FIG. 26C, is
employed to provide additional control over the repurposing
of'the shared content (e.g., the presentation of the soccer team
player information) to the content domain (a soccer team).
For example, metadata table 2650 includes app version infor-
mation, the name of the “template” (described in greater

shared), the etag is stored in step 2540 and the modified 1" detail below) from which the app can be generated, a URL of
document is retrieved in step 2542. a thumbnail image, and text describing the app. The manner
The data and metadata from that modified document is then in which app services 2247 utilizes templates and interprets
extracted in step 2544, and app services 2247 updates and this metadata is described in greater detail below.
repurposes the content and optionally builds or rebuilds (and s In another embodiment, illustrated below, data and meta-
deploys) client app 2245 (e.g., by linking any “vertical” code, data are provided via Google Spreadsheets documents
perhaps generating new code in addition, and binding rel- (spreadsheets). In this embodiment, any worksheet that has a
evant resources and deploying the resulting app). As will be first column name of “setting” and a second column name of
discussed in greater detail below, the data and metadata dic- “value” is treated as metadata, while all other worksheets are
tate, in large part, the nature of the app. 20 treated as data. In this embodiment, table cells contain either
B. Role of Data and MetaData text strings or URLs identifying where images can be
In one embodiment, illustrated in FIGS. 26A-26C, users retrieved.
provide data and metadata as entries in tables (embedded in Multiple tables (see Table 7 and Table 8 below) are com-
Google Docs documents) that are formatted in a predefined bined into a single (larger) table (Table 9), such that unique
manner. The first row of each table includes column names. source columns (named in the first row) map to unique des-
Additional rows provide content items. Each row contains a > {ination columns. Rows are combined when they share a
list of values, one per column. The value in a given column is common “key” (defined by a special column—the “key col-
named corresponding to the matching column of the header umn”). In one embodiment, the first column of each table is
row. In another embodiment, the first table in a Google Docs deemed to be the key column. In another embodiment, the key
document (with a first column name of “‘setting” and a second column is determined by the value in the metadata table
. . 30 . :
column name of “value”) is treated as metadata, while other corresponding to the setting named “key column.”
tables are treated as data. InTable 7 below, the first column (“id”") is deemed to be the
FIGS.26A-26C illustrate a Google Docs document used to key column, in this case representing a city (e.g., in which
create a “soccer team” app. As shown in FIG. 26 A, the docu- library branches are located), while the other columns repre-
ment by convention starts with a set of elements 2600 that 55 Sent days of the week. The individual cells within each row
include an app title 2610 followed by descriptive text 2620 include a range of hours, representing the hours of operation
and two screen shots 2622 and 2624 of the app “controlled by of a particular library branch. Note that this content domain
the document.” Then a table (followed by descriptive text) (library branches) may or may not be discernible to people
2625, shown in FIG. 26B, provides the data which, in this viewing the “raw” tables, but the app services will interpret
content domain, represent player information. The player 2 and repurpose this content to facilitate the generation of an
information (formatted in distinct columns) includes each app that will present the content in a more usable form with
player’s jersey number, picture, name, phone number, email which users can interact.
address, description and statistics. The descriptive text in this In Table 8, the key column (“id”’) maps the city to a second
embodiment provides instructions to the users relating to the column (“latlong”™), representing, for example, the location
updating and sharing ofthe document and downloading of the 45 (latitude and longitude) of the library branch in that city.
app being “controlled” by the document (e.g., automatically Tables 7 and 8 are combined into Table 9 using the key (“id”)
reflecting updated content whenever the document or its column. This process enables users to create shorter, more
access control settings are modified). readabletables (e.g., in Google Spreadsheets), while the com-
Note that the formatting of the player information is deter- puter generates and stores the single larger table for internal
mined by the users (in this case members of the soccer team), purposes to facilitate the operation of the app.
TABLE 7
id Mon Tue Wed Thu Fri Sat Sun
cupertino 1pm-9pm 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm 12pm-6pm
campbell Closed 12pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm Closed
gilroy Closed 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pnn Closed
losaltos 10am-9pm 10am-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm 12pm-6pm
milpitas 10am-9pm 10am-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm 12pm-6pm
morganhill Closed 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm Closed
saratoga 1pm-9pm 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pnn 1pm-6pm
woodland Closed Closed Closed Closed Closed Closed Closed
bookmobile
questions1
questions2 8:30am-5pm 8:30am-5pm 8:30am-5pm 8:30am-5pm 8:30am-5pm Closed Closed

US 9,268,829 B2

67 68
TABLE 8 D. Sharing and Publication
I} Jatlon Not all apps are accessible to the public. Some are
restricted to particular groups of users. Upon generating cli-
cupertino 37.316720, -122.029247 ent app 2245, app services 2247 controls its accessibility to
campbell 37.288084, -121.942403 > particular users via a directory mechanism. The sharin
gilroy 37.005371, ~121.572146 p ; ry . 1g
losaltos 37.381212, —122.114168 mechanism employed by the cloud app 2235 is leveraged (via
milpitas 37.432792, -121.907473 cloud services 2239) to determine which apps a user is autho-
?;fj;fl“ ;;;35? ; :g;gféigg rized to access. Each user is assigned a personalized directory
woodland 37.343958, ~122.075595 1o listing all of the apps which that user is authorized to access.
The directory also includes a list of “All Public Apps™ that are
available to all users.
TABLE 9
id Mon Tue Wed Thu Fri Sat Sun latlon
cupertino 1pm-9pm 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm 12pm-6pm 37.316720, -122.029247
campbell Closed 12pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm Closed 37.288084, -121.942403
gilroy Closed 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm Closed 37.005371,-121.572146
losaltos 10am-9pm 10am-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm 12pm-6pm 37.381212,-122.114168
milpitas 10am-9pm 10am-9pm 10am-9pm 10am-9pm 10am-9pm 10am-6pm 12pm-6pm 37.432792,-121.907473
morganhill Closed 1pm-9pm 10am-9pm 10am-9pm 10am-6pm 10am-6pm Closed 37.125235,-121.663583
saratoga 1pm-9pm 1pm-9pm 10am-9pm 10am-9pm 10am-9pm 10am-6pm 1pm-6pm 37.270017,-122.016499
woodland Closed Closed Closed Closed Closed Closed Closed 37.343958,-122.075595
bookmobile
questionsl
questions2 8:30am-5pm 8:30am-5pm 8:30am-5pm 8:30am-5pm 8:30am-5pm Closed Closed
C. Templates FIGS. 27A-27C illustrate one embodiment of a personal
As noted above, the data and metadata tables, combined in directory of apps that is launched from a single app (as con-
one embodiment with “templates,” drive the creation of the 3¢ trasted with individually launchable apps). In FIG. 27A, app
app (or the operation of the app based on its interaction with page 2700 (implemented on an iPhone) includes icons of
app server 2240). A template is a special item of metadata that various apps, including an app icon 2710 (entitled “Boopsie
controls various aspects of a client app, including the app’s Docs”) that, when selected by a user, launches a directory
data presentation to users, app icons displayed withina listof 2725 of “Boopsie Docs” apps, illustrated in FIG. 27B. App
apps, app version numbers and text describing the app that 35 direCtOry 2725 ipCludeS a dlreCtOry title and deSCriptiOn 2730,
might appear within the app or in an external table of contents followed by a title and description for each app the user is
(discussed below). authorized to access, including the “Chicken Legs Roster”
In one embodiment, a template contains a “transformation PP 2740. Once the user selects this app, the initial page 2750
string” that indicates how a data table is to be transformed into ,Oflts coliltelnts are (.11sp1ayed, abs 111u§trated 1n§IG. 27C (show-
anew table (stored, for example, on app server 2240), referred 40 ing each player’s jersey number, picture and name).
« » st . . E. Access Control
to as a “flat file,” that is utilized to present the information to . .
h . . . In one embodiment, when app services 2247 first encoun-
users. For example, a transformation string might look like . . .
the followine: ter a new user, a personalized directory and a corresponding
J I\% berl (Pl N H{DescriptionMt{] “invitation code” (e.g., a unique random code) are created for
{Jersey Number}{Player Name}|{Description}\t{Jersey 45 that user. App services 2247 sends an email to that user
N}lmbe.r } . (available because Google Docs, for example, employs email
\tve{ MOblle Phone}\t{Emall}\t{Image URL} addresses to implement sharing) with the user’s invitation
) In this example, the corresponding ﬁel.ds would be com- code and instructions for accessing the user’s personalized
bined accordingly, with the “\t representing a tab separator directory. It should be noted that, even without receiving this
(ASCIII 9 character). In one embodiment, the app enables the s email, app services 2247 can obtain this information by poll-
document to be searched using the multiple prefix search ing cloud services 2239.
techniques described above. The flat file is processed into a This invitation code mechanism is illustrated in FIGS.
collection of index files, which can be used to generate search 28A-28C. Upon initially launching the “Boopsie Docs” app,
results quickly (as described above in greater detail). instead of being presented with a directory of apps (such as
The presentation can be further controlled by utilizing a 55 directory 2725 in FIG. 27B), the user is presented with a page
second template that determines the app layout. For example, 2800 that includes a request 2810 for an invitation code. Upon
the following two templates in combination dictate the app’s selecting that request item, page 2825 is displayed (as shown
title colors, image layout, detail pages and various other in FIG. 28B) with a text box 2830 into which the user’s
aspects of the app’s presentation. invitation code can be entered. Upon submitting the invitation
“Landing Page Template” 60 code (and upon subsequent launches of the Boopsie Docs
HIE#515E66 {title hM\t\t\t\t{ thumbnail } app), the directory of apps which the user is authorized to
“Headers Template” access 2850 is then displayed.
B-Menu-Entry: ION; Picture: $%6; Image; 0 F. Table of Contents
B-Row-Hints: 60;10,$1;20,80;,100 It is often desirable to combine several tables together in a
B-Menu-Entry: 1IN; Details; i:@/{detail=$2/bd_soccer_ 65 single app, even though those tables may be otherwise unre-

roster_detail}; Click
B-Title: List; {title}

lated. For example, an app for the band Green Day might be
built from shared user content (created, for example, in

US 9,268,829 B2

69

Google Docs) containing distinct tables for “Band Members,”
“Tour Dates” and “Discography.” Yet, a convenient method of
presentation in the app would include an initial “Table of
Contents” page containing titles ofthose three tables, with the
relevant information from each table displayed upon its selec-
tion.

This is accomplished in one embodiment by generating
automatically an additional document in the cloud app (e.g.,
Google Docs) that includes (like the other documents) a data
table and a metadata table. In this case, the metadata table
would identify a template as well, but would rely on the
functionality in Google Docs (and other cloud apps) that
allows for the insertion into a document of a link to another
document. In other words, the Table of Contents document
would include links to each of the other desired documents.
App services 2247 recognizes such inter-document links and
inserts corresponding links between the apps it generates or
“controls.”

G. Editable Apps

Because apps are driven by the particular structure of the
shared content employed by the users in the cloud app, it is
possible to create a mechanism to edit the shared content from
within the app (rather than via the cloud app). In one embodi-
ment, each row of a data table in the shared content corre-
sponds to an item displayed by the app. The app can include
an “Edit this Item” mechanism (with an interface for editing
the various elements of an item), which is activated whenever
the user selects the item. This “row editor” would then update
the item in accordance with the user’s editing actions.

H. Branded Apps

In one embodiment, all of a user’s apps are presented
together, in accordance with the user’s personalized directory
(as discussed above). In another embodiment, however, a
custom access point can be employed specifically to host a
single app. This custom access point can include custom
branding (icon, splash screen, watermark, etc.), as well as an
internal indicator of which app is to be hosted. The app will
thus be activated directly, bypassing any directory. It may
well be desirable to activate a “table of contents™ app in this
manner.

From the above descriptions of the various embodiments of
the interactive, multi-prefix, multi-tier and dynamic menu
aspects of the present invention, including the use of predic-
tive text to generate targeted ads along with relevant search
results, many additional features and applications of these
techniques will become apparent. For example, as noted
above, these techniques could be incorporated wholly within
a web browser (such as Firefox Mobile) or an integrated or
standalone search engine (such as Google). One or more
channels could be searchable, or simply selected from a list of
“smart bookmarks.” Moreover, a vertical web site or sites
(such as Amazon, Wikipedia or IMDB) could provide various
combinations of these features as a standalone application
containing one or more channels.

Multiple channels could be searched at one time, particu-
larly if they are related, and dynamic menus could be
employed to perform functions and retrieve information from
channels/web sites in advance of relying upon a client web
browser. Moreover, the interoperability between a client
application and a client web browser, as discussed above,
greatly enhances the user’s experience by enabling the user to
switch between these applications when the particular con-
text makes one or the other more useful or desirable.

In a mobile communications environment, the advantages
of interactive multi-prefix queries, particularly when targeted
across one or more tiers of channels, are quite significant.
Avoiding multiple web page refreshes and links, providing

25

30

40

45

55

70

results quickly and interactively and enabling users to mini-
mize data entry is of great importance in such a resource-
constrained environment. Moreover, adding contextual func-
tionality such as dynamic menus that can vary among
channels and even individual records or program states (par-
ticularly when deployed using a thin-client server-controlled
architecture), significantly enhances these advantages, by
providing a high degree of context-specific functionality
while minimizing iterations among resource-intensive steps
such as following links or refreshing web pages.

Moreover, the use of predictive text techniques, along with
additional contextual information, serves both to identify
more relevant search results, and more effectively target ads
relevant to particular classes of users. As a result, user inter-
action is minimized (of particular importance in the context of
mobile searches), while results can be updated and refreshed
(and thus improved) as the user enters more keystrokes and
query prefixes, yielding an improved targeted ad mechanism
with increased ad inventory.

Finally, the separation of the acquisition, maintenance and
sharing of the content (performed in an existing cloud app)
from the interpretation and repurposing of the content to a
particular content domain (performed by an external service
accessible by one or more vertical apps client apps) greatly
simplifies the tasks performed by the users (who can generate
their shared content in advance of the app-development pro-
cess) as well as the app developers (who can leverage existing
cloud services).

Some portions of above description describe the embodi-
ments in terms of algorithms and symbolic representations of
operations on information. These algorithmic descriptions
and representations are commonly used by those skilled in the
data processing arts to convey the substance of their work
effectively to others skilled in the art. These operations, while
described functionally, computationally or logically, are
understood to be implemented by computer programs or
equivalent electrical circuits, microcode, or the like. Further-
more, it has also proven convenient at times, to refer to these
arrangements of operations as modules, without loss of gen-
erality. The described operations and their associated mod-
ules may be embodied in software, firmware, hardware, or
any combinations thereof.

As used herein any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expression
“coupled” and “connected” along with their derivatives. It
should be understood that these terms are not intended as
synonyms for each other. For example, some embodiments
may be described using the term “connected” to indicate that
two or more elements are in direct physical or electrical
contact with each other. In another example, some embodi-
ments may be described using the term “coupled” to indicate
that two or more elements are in direct physical or electrical
contact. The term “coupled,” however, may also mean that
two or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other. The
embodiments are not limited in this context.

2 <

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that

comprises a list of elements is not necessarily limited to only

US 9,268,829 B2

71

those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appara-
tus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not present),
A is false (or not present) and B is true (or present), and both
A and B are true (or present).

In addition, use of the “a” or “an” are employed to describe
elements and components of the embodiments herein. This is
done merely for convenience and to give a general sense of the
invention. This description should be read to include one or at
least one and the singular also includes the plural unless it is
obvious that it is meant otherwise.

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative structural and functional
designs for a system and a process for providing multi-prefix,
interactive search capabilities on a mobile communications
device through the disclosed principles herein. Thus, while
particular embodiments and applications have been illus-
trated and described, it is to be understood that the disclosed
embodiments are not limited to the precise construction and
components disclosed herein. Various modifications, changes
and variations, which will be apparent to those skilled in the
art, may be made in the arrangement, operation and details of
the method and apparatus disclosed herein without departing
from the spirit and scope defined in the appended claims.

The descriptive text providing instructions to the users in
the embodiments of FIGS. 26 A and 26B can include:

Step 1: Modify the table below, inserting your own data. To
add rows, right click in a row and choose ‘Insert Row Below’
(NOTE: You can drag an image from another browser page
into the image URL box)

Step 2. When you are ready, share this document with
docs@boopsie.com by selecting Share in the upper right cor-
ner and choose Invite People.

Step 3. Download the Boopsie Docs App. By going to docs
boopsie.com from your mobile browser (or search for the
App. Store for “BoopsieDocs™)

Step 4. Make updates as often as you like. The changes will
show up in the Boopsie Docs app. within a few minutes.

What is claimed:

1. An app server, embodied in a computer accessible stor-
age medium external to an existing cloud platform, that lever-
ages cloud services to enable client applications to interact
with content created and maintained via a cloud app on the
cloud platform, the app server comprising:

(a) an app service extractor that utilizes the cloud services
to extract a first content and a second content from the
cloud platform, the first content comprising a first
dataset having a first data format and the second content
comprising a second dataset having a second data for-
mat; and

(b) an app service processor that combines the first and
second datasets, interprets the combined first and second
datasets and repurposes at least a portion of the com-
bined first and second datasets to enable a client appli-
cation to provide additional content-specific functional-
ity with respect to the combined first and second
datasets.

2. The app server of claim 1, wherein the first and second

datasets are in dissimilar formats.

3. The app server of claim 1, wherein the first and second
datasets are in similar formats.

25

30

35

40

45

50

55

60

72

4. The app server of claim 2, further comprising an app
service application builder that automatically generates one
or more client applications.

5. The app server of claim 4, wherein the app service
application builder automatically deploys the generated cli-
ent applications.

6. The app server of claim 2, wherein the first and second
content includes data and metadata, and wherein the app
service processor utilizes the metadata from the first and
second content to combine and interpret the first and second
datasets.

7. The app server of claim 6, wherein the metadata controls
the presentation format of the first and second content by the
client application.

8. The app server of claim 6, wherein the metadata controls
the branding of the client application.

9. The app server of claim 6, wherein the metadata controls
dynamic menus that enable users of the client application to
invoke a particular function.

10. The app server of claim 2, wherein the content is
modified directly by users of the client applications.

11. The app server of claim 2, wherein the client applica-
tions are accessed only by authorized users of the content.

12. A method for leveraging external cloud services on one
or more existing cloud platforms to enable client applications
to interact with at least a portion of a content created and
maintained via at least one cloud app on the one or more
existing cloud platforms, the method including the following
steps:

(a) utilizing one or more of the external cloud services to
extract a first content and a second content from the one
or more existing cloud platforms; and

(b) interpreting and combining the extracted first and sec-
ond content and repurposing the combined extracted
first and second content to enable a client application to
provide additional content-specific functionality with
respect to the combined extracted first and second con-
tent.

13. The method of claim 12, wherein the first and second

content are in dissimilar formats.

14. The method of claim 12, wherein the first and second
datasets are in similar formats.

15. The method of claim 12, wherein the first content is
maintained on a first cloud platform and the second content is
maintained on a second cloud platform.

16. The method of claim 13, wherein the first and second
content include data and metadata, and wherein the metadata
is interpreted to facilitate combining of the first and second
content.

17. The method of claim 16, wherein the metadata is fur-
ther utilized to repurpose the combined extracted first and
second content.

18. The method of claim 17, wherein the metadata controls
one or more dynamic menus that enable users of the client
application to invoke a particular function.

19. The method of claim 12, wherein the client application
is accessible only by authorized users of the content created
and maintained via the cloud app.

20. The method of claim 15, wherein the first and second
content include data and metadata, and wherein the metadata
is utilized to repurpose the combined extracted first and sec-
ond content.

